Codimension Arithmetically Gorenstein Subschemes of projective -space
Robin Hartshorne[1]; Irene Sabadini[2]; Enrico Schlesinger[2]
- [1] University of California Department of Mathematics Berkeley, California 94720–3840 (USA)
- [2] Politecnico di Milano Dipartimento di Matematica Piazza Leonardo da Vinci 32 20133 Milano (Italia)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 6, page 2037-2073
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHartshorne, Robin, Sabadini, Irene, and Schlesinger, Enrico. "Codimension $3$ Arithmetically Gorenstein Subschemes of projective $N$-space." Annales de l’institut Fourier 58.6 (2008): 2037-2073. <http://eudml.org/doc/10369>.
@article{Hartshorne2008,
abstract = {We study the lowest dimensional open case of the question whether every arithmetically Cohen–Macaulay subscheme of $\mathbb\{P\}^N$ is glicci, that is, whether every zero-scheme in $\mathbb\{P\}^3$ is glicci. We show that a general set of $n \ge 56$ points in $\mathbb\{P\}^3$ admits no strictly descending Gorenstein liaison or biliaison. In order to prove this theorem, we establish a number of important results about arithmetically Gorenstein zero-schemes in $\mathbb\{P\}^3$.},
affiliation = {University of California Department of Mathematics Berkeley, California 94720–3840 (USA); Politecnico di Milano Dipartimento di Matematica Piazza Leonardo da Vinci 32 20133 Milano (Italia); Politecnico di Milano Dipartimento di Matematica Piazza Leonardo da Vinci 32 20133 Milano (Italia)},
author = {Hartshorne, Robin, Sabadini, Irene, Schlesinger, Enrico},
journal = {Annales de l’institut Fourier},
keywords = {Gorenstein liaison; zero-dimensional schemes; $h$-vector; -vector; parametrization},
language = {eng},
number = {6},
pages = {2037-2073},
publisher = {Association des Annales de l’institut Fourier},
title = {Codimension $3$ Arithmetically Gorenstein Subschemes of projective $N$-space},
url = {http://eudml.org/doc/10369},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Hartshorne, Robin
AU - Sabadini, Irene
AU - Schlesinger, Enrico
TI - Codimension $3$ Arithmetically Gorenstein Subschemes of projective $N$-space
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 2037
EP - 2073
AB - We study the lowest dimensional open case of the question whether every arithmetically Cohen–Macaulay subscheme of $\mathbb{P}^N$ is glicci, that is, whether every zero-scheme in $\mathbb{P}^3$ is glicci. We show that a general set of $n \ge 56$ points in $\mathbb{P}^3$ admits no strictly descending Gorenstein liaison or biliaison. In order to prove this theorem, we establish a number of important results about arithmetically Gorenstein zero-schemes in $\mathbb{P}^3$.
LA - eng
KW - Gorenstein liaison; zero-dimensional schemes; $h$-vector; -vector; parametrization
UR - http://eudml.org/doc/10369
ER -
References
top- M. Boij, Gorenstein Artin algebras and points in projective space, Bull. London Math. Soc. 31 (1997), 11-16 Zbl0940.13008MR1651033
- W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39 (1993), Cambridge University Press Zbl0788.13005MR1251956
- D. A. Buchsbaum, D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), 447-485 Zbl0373.13006MR453723
- M. Casanellas, E. Drozd, R. Hartshorne, Gorenstein liaison and ACM sheaves, J. Reine Angew. Math. 584 (2005), 149-171 Zbl1095.14045MR2155088
- M. Casanellas, R. Hartshorne, Gorenstein biliaison and ACM sheaves, J. Algebra 278 (2004), 314-341 Zbl1057.14062MR2068080
- A. Conca, G. Valla, Hilbert function of powers of ideals of low codimension, Math. Z. 230 (1999), 753-784 Zbl0927.13020MR1686559
- E. Davis, A. V. Geramita, F. Orecchia, Gorenstein algebras and the Cayley-Bacharach Theorem, Proc. Amer. Math. Soc. 93 (1985), 593-597 Zbl0575.14040MR776185
- E. De Negri, G. Valla, The -vector of a Gorenstein codimension three domain, Nagoya Math. J. 138 (1995), 113-140 Zbl0838.13010MR1339945
- S. J. Diesel, Irreducibility and dimension theorems for families of height 3 Gorenstein algebras, Pacific J. Math. 172 (1996), 365-397 Zbl0882.13021MR1386623
- Ph. Ellia, Exemples de courbes de à fibré normal semi-stable, stable, Math. Ann. 264 (1983), 389-396 Zbl0519.14025MR714111
- Ph. Ellia, Double structures and normal bundle of space curves, J. London Math. Soc. 58 (1998), 18-26 Zbl0959.14018MR1666062
- G. Ellingsrud, Sur le schéma de Hilbert des variétés de codimension 2 dans à cône de Cohen–Macaulay, Ann. Sci. ENS 8 (1975), 423-432 Zbl0325.14002MR393020
- L. Gruson, C. Peskine, Genre des courbes de l’espace projectif, Springer LNM 687 (1977), 31-59 Zbl0412.14011
- R. Hartshorne, Ample Subvarieties of Algebraic Varieties, 156 (1970), Springer Verlag, Heidelberg Zbl0208.48901MR282977
- R. Hartshorne, On the classification of algebraic space curves. II, Algebraic geometry, Bowdoin 46 (1985), 145-164 Zbl0659.14020MR927954
- R. Hartshorne, Generalized divisors on Gorenstein schemes, -Theory 8 (1994), 287-339 Zbl0826.14005MR1291023
- R. Hartshorne, Some examples of Gorenstein liaison in codimension three, Collect. Math. 53 (2002), 21-48 Zbl1076.14065MR1893306
- R. Hartshorne, Geometry of arithmetically Gorenstein curves in , Collect. Math. 55 (2004), 97-111 Zbl1052.14032MR2028982
- R. Hartshorne, Generalized divisors and biliaison, Illinois J. Math. 51 (2007), 83-98 Zbl1133.14005MR2346188
- J. Herzog, N. V. Trung, G. Valla, On hyperplane sections of reduced irreducible varieties of low codimension, J. Math. Kyoto Univ. 34 (1994), 47-72 Zbl0836.14031MR1263860
- J. O. Kleppe, Maximal Families of Gorenstein Algebras, Trans. Amer. Math. Soc. 358 (2006), 3133-3167 Zbl1103.14005MR2216262
- J. O. Kleppe, Maximal Families of Gorenstein Algebras, Trans. Amer. Math. Soc. 358 (2006), 3133-3167 Zbl1103.14005MR2216262
- J. O. Kleppe, J. C. Migliore, R. M. Miró–Roig, U. Nagel, C. Peterson, Gorenstein liaison, complete intersection liaison invariants and unobstructedness, (2001), Memoirs Amer. Math. Soc. Zbl1006.14018
- J. O. Kleppe, R. M. Miró–Roig, The dimension of the Hilbert scheme of Gorenstein codimension 3 subschemes, J. Pure Appl. Algebra 127 (1998), 73-82 Zbl0949.14003MR1609504
- M. Kreuzer, On -dimensional complete intersections, Math. Ann. 292 (1992), 43-58 Zbl0741.14030MR1141784
- F. S. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26 (1927), 531-555 Zbl53.0104.01
- M. Martin–Deschamps, D. Perrin, Sur la classification des courbes gauches, 184–185 (1990), Société Mathématique de France Zbl0717.14017MR1073438
- J. C. Migliore, Introduction to Liaison Theory and Deficiency Modules, (1998), Birkhäuser, Boston Zbl0921.14033MR1712469
- J. C. Migliore, U. Nagel, Monomial ideals and the Gorenstein liaison class of a complete intersection, Compositio Math. 133 (2002), 25-36 Zbl1047.14034MR1918287
- S. Nollet, Bounds on multisecant lines, Collect. Math. 49 (1998), 447-463 Zbl0959.14014MR1677104
- D. Perrin, Courbes passant par points généraux de , 28–29 (1987), Soc. Math. France (N.S.) Zbl0648.14028MR925737
- E. Sernesi, Topics on families of projective schemes, Queen’s Papers in Pure and Applied Mathematics 73 (1986), Queen’s University, Kingston
- R. P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), 57-83 Zbl0384.13012MR485835
- C. Walter, Algebraic cohomology methods for the normal bundle of algebraic space curves, (1990)
- J. Watanabe, A note on Gorenstein rings of embedding codimension three, Nagoya Math. J. 50 (1973), 227-232 Zbl0242.13019MR319985
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.