Codimension 3 Arithmetically Gorenstein Subschemes of projective N -space

Robin Hartshorne[1]; Irene Sabadini[2]; Enrico Schlesinger[2]

  • [1] University of California Department of Mathematics Berkeley, California 94720–3840 (USA)
  • [2] Politecnico di Milano Dipartimento di Matematica Piazza Leonardo da Vinci 32 20133 Milano (Italia)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 6, page 2037-2073
  • ISSN: 0373-0956

Abstract

top
We study the lowest dimensional open case of the question whether every arithmetically Cohen–Macaulay subscheme of N is glicci, that is, whether every zero-scheme in 3 is glicci. We show that a general set of n 56 points in 3 admits no strictly descending Gorenstein liaison or biliaison. In order to prove this theorem, we establish a number of important results about arithmetically Gorenstein zero-schemes in 3 .

How to cite

top

Hartshorne, Robin, Sabadini, Irene, and Schlesinger, Enrico. "Codimension $3$ Arithmetically Gorenstein Subschemes of projective $N$-space." Annales de l’institut Fourier 58.6 (2008): 2037-2073. <http://eudml.org/doc/10369>.

@article{Hartshorne2008,
abstract = {We study the lowest dimensional open case of the question whether every arithmetically Cohen–Macaulay subscheme of $\mathbb\{P\}^N$ is glicci, that is, whether every zero-scheme in $\mathbb\{P\}^3$ is glicci. We show that a general set of $n \ge 56$ points in $\mathbb\{P\}^3$ admits no strictly descending Gorenstein liaison or biliaison. In order to prove this theorem, we establish a number of important results about arithmetically Gorenstein zero-schemes in $\mathbb\{P\}^3$.},
affiliation = {University of California Department of Mathematics Berkeley, California 94720–3840 (USA); Politecnico di Milano Dipartimento di Matematica Piazza Leonardo da Vinci 32 20133 Milano (Italia); Politecnico di Milano Dipartimento di Matematica Piazza Leonardo da Vinci 32 20133 Milano (Italia)},
author = {Hartshorne, Robin, Sabadini, Irene, Schlesinger, Enrico},
journal = {Annales de l’institut Fourier},
keywords = {Gorenstein liaison; zero-dimensional schemes; $h$-vector; -vector; parametrization},
language = {eng},
number = {6},
pages = {2037-2073},
publisher = {Association des Annales de l’institut Fourier},
title = {Codimension $3$ Arithmetically Gorenstein Subschemes of projective $N$-space},
url = {http://eudml.org/doc/10369},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Hartshorne, Robin
AU - Sabadini, Irene
AU - Schlesinger, Enrico
TI - Codimension $3$ Arithmetically Gorenstein Subschemes of projective $N$-space
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 2037
EP - 2073
AB - We study the lowest dimensional open case of the question whether every arithmetically Cohen–Macaulay subscheme of $\mathbb{P}^N$ is glicci, that is, whether every zero-scheme in $\mathbb{P}^3$ is glicci. We show that a general set of $n \ge 56$ points in $\mathbb{P}^3$ admits no strictly descending Gorenstein liaison or biliaison. In order to prove this theorem, we establish a number of important results about arithmetically Gorenstein zero-schemes in $\mathbb{P}^3$.
LA - eng
KW - Gorenstein liaison; zero-dimensional schemes; $h$-vector; -vector; parametrization
UR - http://eudml.org/doc/10369
ER -

References

top
  1. M. Boij, Gorenstein Artin algebras and points in projective space, Bull. London Math. Soc. 31 (1997), 11-16 Zbl0940.13008MR1651033
  2. W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39 (1993), Cambridge University Press Zbl0788.13005MR1251956
  3. D. A. Buchsbaum, D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), 447-485 Zbl0373.13006MR453723
  4. M. Casanellas, E. Drozd, R. Hartshorne, Gorenstein liaison and ACM sheaves, J. Reine Angew. Math. 584 (2005), 149-171 Zbl1095.14045MR2155088
  5. M. Casanellas, R. Hartshorne, Gorenstein biliaison and ACM sheaves, J. Algebra 278 (2004), 314-341 Zbl1057.14062MR2068080
  6. A. Conca, G. Valla, Hilbert function of powers of ideals of low codimension, Math. Z. 230 (1999), 753-784 Zbl0927.13020MR1686559
  7. E. Davis, A. V. Geramita, F. Orecchia, Gorenstein algebras and the Cayley-Bacharach Theorem, Proc. Amer. Math. Soc. 93 (1985), 593-597 Zbl0575.14040MR776185
  8. E. De Negri, G. Valla, The h -vector of a Gorenstein codimension three domain, Nagoya Math. J. 138 (1995), 113-140 Zbl0838.13010MR1339945
  9. S. J. Diesel, Irreducibility and dimension theorems for families of height 3 Gorenstein algebras, Pacific J. Math. 172 (1996), 365-397 Zbl0882.13021MR1386623
  10. Ph. Ellia, Exemples de courbes de 3 à fibré normal semi-stable, stable, Math. Ann. 264 (1983), 389-396 Zbl0519.14025MR714111
  11. Ph. Ellia, Double structures and normal bundle of space curves, J. London Math. Soc. 58 (1998), 18-26 Zbl0959.14018MR1666062
  12. G. Ellingsrud, Sur le schéma de Hilbert des variétés de codimension 2 dans e à cône de Cohen–Macaulay, Ann. Sci. ENS 8 (1975), 423-432 Zbl0325.14002MR393020
  13. L. Gruson, C. Peskine, Genre des courbes de l’espace projectif, Springer LNM 687 (1977), 31-59 Zbl0412.14011
  14. R. Hartshorne, Ample Subvarieties of Algebraic Varieties, 156 (1970), Springer Verlag, Heidelberg Zbl0208.48901MR282977
  15. R. Hartshorne, On the classification of algebraic space curves. II, Algebraic geometry, Bowdoin 46 (1985), 145-164 Zbl0659.14020MR927954
  16. R. Hartshorne, Generalized divisors on Gorenstein schemes, -Theory 8 (1994), 287-339 Zbl0826.14005MR1291023
  17. R. Hartshorne, Some examples of Gorenstein liaison in codimension three, Collect. Math. 53 (2002), 21-48 Zbl1076.14065MR1893306
  18. R. Hartshorne, Geometry of arithmetically Gorenstein curves in 4 , Collect. Math. 55 (2004), 97-111 Zbl1052.14032MR2028982
  19. R. Hartshorne, Generalized divisors and biliaison, Illinois J. Math. 51 (2007), 83-98 Zbl1133.14005MR2346188
  20. J. Herzog, N. V. Trung, G. Valla, On hyperplane sections of reduced irreducible varieties of low codimension, J. Math. Kyoto Univ. 34 (1994), 47-72 Zbl0836.14031MR1263860
  21. J. O. Kleppe, Maximal Families of Gorenstein Algebras, Trans. Amer. Math. Soc. 358 (2006), 3133-3167 Zbl1103.14005MR2216262
  22. J. O. Kleppe, Maximal Families of Gorenstein Algebras, Trans. Amer. Math. Soc. 358 (2006), 3133-3167 Zbl1103.14005MR2216262
  23. J. O. Kleppe, J. C. Migliore, R. M. Miró–Roig, U. Nagel, C. Peterson, Gorenstein liaison, complete intersection liaison invariants and unobstructedness, (2001), Memoirs Amer. Math. Soc. Zbl1006.14018
  24. J. O. Kleppe, R. M. Miró–Roig, The dimension of the Hilbert scheme of Gorenstein codimension 3 subschemes, J. Pure Appl. Algebra 127 (1998), 73-82 Zbl0949.14003MR1609504
  25. M. Kreuzer, On 0 -dimensional complete intersections, Math. Ann. 292 (1992), 43-58 Zbl0741.14030MR1141784
  26. F. S. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26 (1927), 531-555 Zbl53.0104.01
  27. M. Martin–Deschamps, D. Perrin, Sur la classification des courbes gauches, 184–185 (1990), Société Mathématique de France Zbl0717.14017MR1073438
  28. J. C. Migliore, Introduction to Liaison Theory and Deficiency Modules, (1998), Birkhäuser, Boston Zbl0921.14033MR1712469
  29. J. C. Migliore, U. Nagel, Monomial ideals and the Gorenstein liaison class of a complete intersection, Compositio Math. 133 (2002), 25-36 Zbl1047.14034MR1918287
  30. S. Nollet, Bounds on multisecant lines, Collect. Math. 49 (1998), 447-463 Zbl0959.14014MR1677104
  31. D. Perrin, Courbes passant par m points généraux de P 3 , 28–29 (1987), Soc. Math. France (N.S.) Zbl0648.14028MR925737
  32. E. Sernesi, Topics on families of projective schemes, Queen’s Papers in Pure and Applied Mathematics 73 (1986), Queen’s University, Kingston 
  33. R. P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), 57-83 Zbl0384.13012MR485835
  34. C. Walter, Algebraic cohomology methods for the normal bundle of algebraic space curves, (1990) 
  35. J. Watanabe, A note on Gorenstein rings of embedding codimension three, Nagoya Math. J. 50 (1973), 227-232 Zbl0242.13019MR319985

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.