An arithmetic Riemann-Roch theorem in higher degrees

Henri Gillet[1]; Damian Rössler[2]; Christophe Soulé[3]

  • [1] University of Illinois at Chicago Department of Mathematics Box 4348 Chicago IL 60680 (USA)
  • [2] Institut de Mathématiques de Jussieu 2 place Jussieu Case Postale 7012 75251 Paris cedex 05 (France)
  • [3] IHÉS 35 route de Chartres 91440 Bures-Sur-Yvette (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 6, page 2169-2189
  • ISSN: 0373-0956

Abstract

top
We prove an analog in Arakelov geometry of the Grothendieck-Riemann-Roch theorem.

How to cite

top

Gillet, Henri, Rössler, Damian, and Soulé, Christophe. "An arithmetic Riemann-Roch theorem in higher degrees." Annales de l’institut Fourier 58.6 (2008): 2169-2189. <http://eudml.org/doc/10374>.

@article{Gillet2008,
abstract = {We prove an analog in Arakelov geometry of the Grothendieck-Riemann-Roch theorem.},
affiliation = {University of Illinois at Chicago Department of Mathematics Box 4348 Chicago IL 60680 (USA); Institut de Mathématiques de Jussieu 2 place Jussieu Case Postale 7012 75251 Paris cedex 05 (France); IHÉS 35 route de Chartres 91440 Bures-Sur-Yvette (France)},
author = {Gillet, Henri, Rössler, Damian, Soulé, Christophe},
journal = {Annales de l’institut Fourier},
keywords = {Arakelov Geometry; Grothendieck-Riemann-Roch theorem; analytic torsion form; arithmetic intersection theory; Arakelov geometry; Grothendieck-Riemann-Roch theorm},
language = {eng},
number = {6},
pages = {2169-2189},
publisher = {Association des Annales de l’institut Fourier},
title = {An arithmetic Riemann-Roch theorem in higher degrees},
url = {http://eudml.org/doc/10374},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Gillet, Henri
AU - Rössler, Damian
AU - Soulé, Christophe
TI - An arithmetic Riemann-Roch theorem in higher degrees
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 2169
EP - 2189
AB - We prove an analog in Arakelov geometry of the Grothendieck-Riemann-Roch theorem.
LA - eng
KW - Arakelov Geometry; Grothendieck-Riemann-Roch theorem; analytic torsion form; arithmetic intersection theory; Arakelov geometry; Grothendieck-Riemann-Roch theorm
UR - http://eudml.org/doc/10374
ER -

References

top
  1. S. Ju. Arakelov, An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1179-1192 Zbl0355.14002MR472815
  2. Nicole Berline, Ezra Getzler, Michèle Vergne, Heat kernels and Dirac operators, (2004), Springer-Verlag, Berlin Zbl1037.58015MR2273508
  3. P. Berthelot, A. Grothendieck, L. Illusie, Théorie des intersections et théorème de Riemann-Roch, (1971), Springer-Verlag, Berlin Zbl0218.14001MR354655
  4. J.-M. Bismut, H. Gillet, C. Soulé, Bott-Chern currents and complex immersions, Duke Math. J. 60 (1990), 255-284 Zbl0697.58005MR1047123
  5. Jean-Michel Bismut, Holomorphic families of immersions and higher analytic torsion forms, Astérisque (1997) Zbl0899.32013MR1623496
  6. Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys. 115 (1988), 49-78 Zbl0651.32017
  7. Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott-Chern forms, Comm. Math. Phys. 115 (1988), 79-126 Zbl0651.32017MR929147
  8. Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants, Comm. Math. Phys. 115 (1988), 301-351 Zbl0651.32017MR931666
  9. Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Complex immersions and Arakelov geometry, The Grothendieck Festschrift, Vol. I 86 (1990), 249-331, Birkhäuser Boston, Boston, MA Zbl0744.14015MR1086887
  10. Jean-Michel Bismut, Kai Köhler, Higher analytic torsion forms for direct images and anomaly formulas, J. Algebraic Geom. 1 (1992), 647-684 Zbl0784.32023MR1174905
  11. Jean-Benoît Bost, Analytic torsion of projective spaces and compatibility with immersions of Quillen metrics, Internat. Math. Res. Notices (1998), 427-435 Zbl1048.14500MR1628231
  12. Gerd Faltings, Calculus on arithmetic surfaces, Ann. of Math. (2) 119 (1984), 387-424 Zbl0559.14005MR740897
  13. Gerd Faltings, Lectures on the arithmetic Riemann-Roch theorem, 127 (1992), Princeton University Press, Princeton, NJ Zbl0744.14016MR1158661
  14. William Fulton, Intersection theory, 2 (1984), Springer-Verlag, Berlin Zbl0541.14005MR732620
  15. H. Gillet, C. Soulé, Analytic torsion and the arithmetic Todd genus, Topology 30 (1991), 21-54 Zbl0787.14005MR1081932
  16. Henri Gillet, Christophe Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. (1990), 93-174 (1991) Zbl0741.14012MR1087394
  17. Henri Gillet, Christophe Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. I, Ann. of Math. (2) 131 (1990), 163-203 Zbl0715.14018MR1038362
  18. Henri Gillet, Christophe Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. II, Ann. of Math. (2) 131 (1990), 205-238 Zbl0715.14006MR1043268
  19. Henri Gillet, Christophe Soulé, An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), 473-543 Zbl0777.14008MR1189489
  20. Walter Gubler, Moving lemma for -chains, J. Reine Angew. Math. 548 (2002), 1-19 Zbl1016.14002MR1915208
  21. Serge Lang, Introduction to Arakelov theory, (1988), Springer-Verlag, New York Zbl0667.14001MR969124
  22. Pierre Lelong, Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France 85 (1957), 239-262 Zbl0079.30901MR95967
  23. Damian Roessler, An Adams-Riemann-Roch theorem in Arakelov geometry, Duke Math. J. 96 (1999), 61-126 Zbl0961.14006MR1663919
  24. C. Soulé, Lectures on Arakelov geometry, 33 (1992), Cambridge University Press, Cambridge Zbl0812.14015MR1208731
  25. Y. Zha, A General Arithmetic Riemann-Roch Theorem, (1998) 

NotesEmbed ?

top

You must be logged in to post comments.