An arithmetic Riemann-Roch theorem in higher degrees

Henri Gillet[1]; Damian Rössler[2]; Christophe Soulé[3]

  • [1] University of Illinois at Chicago Department of Mathematics Box 4348 Chicago IL 60680 (USA)
  • [2] Institut de Mathématiques de Jussieu 2 place Jussieu Case Postale 7012 75251 Paris cedex 05 (France)
  • [3] IHÉS 35 route de Chartres 91440 Bures-Sur-Yvette (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 6, page 2169-2189
  • ISSN: 0373-0956

Abstract

top
We prove an analog in Arakelov geometry of the Grothendieck-Riemann-Roch theorem.

How to cite

top

Gillet, Henri, Rössler, Damian, and Soulé, Christophe. "An arithmetic Riemann-Roch theorem in higher degrees." Annales de l’institut Fourier 58.6 (2008): 2169-2189. <http://eudml.org/doc/10374>.

@article{Gillet2008,
abstract = {We prove an analog in Arakelov geometry of the Grothendieck-Riemann-Roch theorem.},
affiliation = {University of Illinois at Chicago Department of Mathematics Box 4348 Chicago IL 60680 (USA); Institut de Mathématiques de Jussieu 2 place Jussieu Case Postale 7012 75251 Paris cedex 05 (France); IHÉS 35 route de Chartres 91440 Bures-Sur-Yvette (France)},
author = {Gillet, Henri, Rössler, Damian, Soulé, Christophe},
journal = {Annales de l’institut Fourier},
keywords = {Arakelov Geometry; Grothendieck-Riemann-Roch theorem; analytic torsion form; arithmetic intersection theory; Arakelov geometry; Grothendieck-Riemann-Roch theorm},
language = {eng},
number = {6},
pages = {2169-2189},
publisher = {Association des Annales de l’institut Fourier},
title = {An arithmetic Riemann-Roch theorem in higher degrees},
url = {http://eudml.org/doc/10374},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Gillet, Henri
AU - Rössler, Damian
AU - Soulé, Christophe
TI - An arithmetic Riemann-Roch theorem in higher degrees
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 6
SP - 2169
EP - 2189
AB - We prove an analog in Arakelov geometry of the Grothendieck-Riemann-Roch theorem.
LA - eng
KW - Arakelov Geometry; Grothendieck-Riemann-Roch theorem; analytic torsion form; arithmetic intersection theory; Arakelov geometry; Grothendieck-Riemann-Roch theorm
UR - http://eudml.org/doc/10374
ER -

References

top
  1. S. Ju. Arakelov, An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1179-1192 Zbl0355.14002MR472815
  2. Nicole Berline, Ezra Getzler, Michèle Vergne, Heat kernels and Dirac operators, (2004), Springer-Verlag, Berlin Zbl1037.58015MR2273508
  3. P. Berthelot, A. Grothendieck, L. Illusie, Théorie des intersections et théorème de Riemann-Roch, (1971), Springer-Verlag, Berlin Zbl0218.14001MR354655
  4. J.-M. Bismut, H. Gillet, C. Soulé, Bott-Chern currents and complex immersions, Duke Math. J. 60 (1990), 255-284 Zbl0697.58005MR1047123
  5. Jean-Michel Bismut, Holomorphic families of immersions and higher analytic torsion forms, Astérisque (1997) Zbl0899.32013MR1623496
  6. Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys. 115 (1988), 49-78 Zbl0651.32017
  7. Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott-Chern forms, Comm. Math. Phys. 115 (1988), 79-126 Zbl0651.32017MR929147
  8. Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants, Comm. Math. Phys. 115 (1988), 301-351 Zbl0651.32017MR931666
  9. Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Complex immersions and Arakelov geometry, The Grothendieck Festschrift, Vol. I 86 (1990), 249-331, Birkhäuser Boston, Boston, MA Zbl0744.14015MR1086887
  10. Jean-Michel Bismut, Kai Köhler, Higher analytic torsion forms for direct images and anomaly formulas, J. Algebraic Geom. 1 (1992), 647-684 Zbl0784.32023MR1174905
  11. Jean-Benoît Bost, Analytic torsion of projective spaces and compatibility with immersions of Quillen metrics, Internat. Math. Res. Notices (1998), 427-435 Zbl1048.14500MR1628231
  12. Gerd Faltings, Calculus on arithmetic surfaces, Ann. of Math. (2) 119 (1984), 387-424 Zbl0559.14005MR740897
  13. Gerd Faltings, Lectures on the arithmetic Riemann-Roch theorem, 127 (1992), Princeton University Press, Princeton, NJ Zbl0744.14016MR1158661
  14. William Fulton, Intersection theory, 2 (1984), Springer-Verlag, Berlin Zbl0541.14005MR732620
  15. H. Gillet, C. Soulé, Analytic torsion and the arithmetic Todd genus, Topology 30 (1991), 21-54 Zbl0787.14005MR1081932
  16. Henri Gillet, Christophe Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. (1990), 93-174 (1991) Zbl0741.14012MR1087394
  17. Henri Gillet, Christophe Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. I, Ann. of Math. (2) 131 (1990), 163-203 Zbl0715.14018MR1038362
  18. Henri Gillet, Christophe Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. II, Ann. of Math. (2) 131 (1990), 205-238 Zbl0715.14006MR1043268
  19. Henri Gillet, Christophe Soulé, An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), 473-543 Zbl0777.14008MR1189489
  20. Walter Gubler, Moving lemma for K 1 -chains, J. Reine Angew. Math. 548 (2002), 1-19 Zbl1016.14002MR1915208
  21. Serge Lang, Introduction to Arakelov theory, (1988), Springer-Verlag, New York Zbl0667.14001MR969124
  22. Pierre Lelong, Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France 85 (1957), 239-262 Zbl0079.30901MR95967
  23. Damian Roessler, An Adams-Riemann-Roch theorem in Arakelov geometry, Duke Math. J. 96 (1999), 61-126 Zbl0961.14006MR1663919
  24. C. Soulé, Lectures on Arakelov geometry, 33 (1992), Cambridge University Press, Cambridge Zbl0812.14015MR1208731
  25. Y. Zha, A General Arithmetic Riemann-Roch Theorem, (1998) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.