An arithmetic Riemann-Roch theorem in higher degrees
Henri Gillet[1]; Damian Rössler[2]; Christophe Soulé[3]
- [1] University of Illinois at Chicago Department of Mathematics Box 4348 Chicago IL 60680 (USA)
- [2] Institut de Mathématiques de Jussieu 2 place Jussieu Case Postale 7012 75251 Paris cedex 05 (France)
- [3] IHÉS 35 route de Chartres 91440 Bures-Sur-Yvette (France)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 6, page 2169-2189
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- S. Ju. Arakelov, An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1179-1192 Zbl0355.14002MR472815
- Nicole Berline, Ezra Getzler, Michèle Vergne, Heat kernels and Dirac operators, (2004), Springer-Verlag, Berlin Zbl1037.58015MR2273508
- P. Berthelot, A. Grothendieck, L. Illusie, Théorie des intersections et théorème de Riemann-Roch, (1971), Springer-Verlag, Berlin Zbl0218.14001MR354655
- J.-M. Bismut, H. Gillet, C. Soulé, Bott-Chern currents and complex immersions, Duke Math. J. 60 (1990), 255-284 Zbl0697.58005MR1047123
- Jean-Michel Bismut, Holomorphic families of immersions and higher analytic torsion forms, Astérisque (1997) Zbl0899.32013MR1623496
- Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys. 115 (1988), 49-78 Zbl0651.32017
- Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott-Chern forms, Comm. Math. Phys. 115 (1988), 79-126 Zbl0651.32017MR929147
- Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants, Comm. Math. Phys. 115 (1988), 301-351 Zbl0651.32017MR931666
- Jean-Michel Bismut, Henri Gillet, Christophe Soulé, Complex immersions and Arakelov geometry, The Grothendieck Festschrift, Vol. I 86 (1990), 249-331, Birkhäuser Boston, Boston, MA Zbl0744.14015MR1086887
- Jean-Michel Bismut, Kai Köhler, Higher analytic torsion forms for direct images and anomaly formulas, J. Algebraic Geom. 1 (1992), 647-684 Zbl0784.32023MR1174905
- Jean-Benoît Bost, Analytic torsion of projective spaces and compatibility with immersions of Quillen metrics, Internat. Math. Res. Notices (1998), 427-435 Zbl1048.14500MR1628231
- Gerd Faltings, Calculus on arithmetic surfaces, Ann. of Math. (2) 119 (1984), 387-424 Zbl0559.14005MR740897
- Gerd Faltings, Lectures on the arithmetic Riemann-Roch theorem, 127 (1992), Princeton University Press, Princeton, NJ Zbl0744.14016MR1158661
- William Fulton, Intersection theory, 2 (1984), Springer-Verlag, Berlin Zbl0541.14005MR732620
- H. Gillet, C. Soulé, Analytic torsion and the arithmetic Todd genus, Topology 30 (1991), 21-54 Zbl0787.14005MR1081932
- Henri Gillet, Christophe Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. (1990), 93-174 (1991) Zbl0741.14012MR1087394
- Henri Gillet, Christophe Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. I, Ann. of Math. (2) 131 (1990), 163-203 Zbl0715.14018MR1038362
- Henri Gillet, Christophe Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. II, Ann. of Math. (2) 131 (1990), 205-238 Zbl0715.14006MR1043268
- Henri Gillet, Christophe Soulé, An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), 473-543 Zbl0777.14008MR1189489
- Walter Gubler, Moving lemma for -chains, J. Reine Angew. Math. 548 (2002), 1-19 Zbl1016.14002MR1915208
- Serge Lang, Introduction to Arakelov theory, (1988), Springer-Verlag, New York Zbl0667.14001MR969124
- Pierre Lelong, Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France 85 (1957), 239-262 Zbl0079.30901MR95967
- Damian Roessler, An Adams-Riemann-Roch theorem in Arakelov geometry, Duke Math. J. 96 (1999), 61-126 Zbl0961.14006MR1663919
- C. Soulé, Lectures on Arakelov geometry, 33 (1992), Cambridge University Press, Cambridge Zbl0812.14015MR1208731
- Y. Zha, A General Arithmetic Riemann-Roch Theorem, (1998)