The arithmetic Grothendieck-Riemann-Roch theorem for general projective morphisms

José Ignacio Burgos Gil; Gerard Freixas i Montplet; Răzvan Liţcanu

Annales de la faculté des sciences de Toulouse Mathématiques (2014)

  • Volume: 23, Issue: 3, page 513-559
  • ISSN: 0240-2963

Abstract

top
In this paper we extend the arithmetic Grothendieck-Riemann-Roch Theorem to projective morphisms between arithmetic varieties that are not necessarily smooth over the complex numbers. The main ingredient of this extension is the theory of generalized holomorphic analytic torsion classes previously developed by the authors.

How to cite

top

Burgos Gil, José Ignacio, Freixas i Montplet, Gerard, and Liţcanu, Răzvan. "The arithmetic Grothendieck-Riemann-Roch theorem for general projective morphisms." Annales de la faculté des sciences de Toulouse Mathématiques 23.3 (2014): 513-559. <http://eudml.org/doc/275359>.

@article{BurgosGil2014,
abstract = {In this paper we extend the arithmetic Grothendieck-Riemann-Roch Theorem to projective morphisms between arithmetic varieties that are not necessarily smooth over the complex numbers. The main ingredient of this extension is the theory of generalized holomorphic analytic torsion classes previously developed by the authors.},
author = {Burgos Gil, José Ignacio, Freixas i Montplet, Gerard, Liţcanu, Răzvan},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Arakelov theory; Grothendieck-Riemann-Roch theorem; projective morphism},
language = {eng},
number = {3},
pages = {513-559},
publisher = {Université Paul Sabatier, Toulouse},
title = {The arithmetic Grothendieck-Riemann-Roch theorem for general projective morphisms},
url = {http://eudml.org/doc/275359},
volume = {23},
year = {2014},
}

TY - JOUR
AU - Burgos Gil, José Ignacio
AU - Freixas i Montplet, Gerard
AU - Liţcanu, Răzvan
TI - The arithmetic Grothendieck-Riemann-Roch theorem for general projective morphisms
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 3
SP - 513
EP - 559
AB - In this paper we extend the arithmetic Grothendieck-Riemann-Roch Theorem to projective morphisms between arithmetic varieties that are not necessarily smooth over the complex numbers. The main ingredient of this extension is the theory of generalized holomorphic analytic torsion classes previously developed by the authors.
LA - eng
KW - Arakelov theory; Grothendieck-Riemann-Roch theorem; projective morphism
UR - http://eudml.org/doc/275359
ER -

References

top
  1. Bismut (J.-M.).— Holomorphic families of immersions and higher analytic torsion forms, Astérisque, vol. 244, SMF, 1997. Zbl0899.32013MR1623496
  2. Bismut (J.-M.), Gillet (H.), and Soulé (C.).— Analytic torsion and holomorphic determinant bundles I, Comm. Math. Phys. 115 (1988), 49-78. Zbl0651.32017MR929146
  3. Bismut (J.-M.), Gillet (H.), and Soulé (C.).— Analytic torsion and holomorphic determinant bundles II, Comm. Math. Phys. 115 (1988), 79-126. Zbl0651.32017MR929147
  4. Bismut (J.-M.), Gillet (H.), and Soulé (C.).— Analytic torsion and holomorphic determinant bundles III, Comm. Math. Phys. 115 (1988), 301-351. Zbl0651.32017MR931666
  5. Bismut (J.-M.) and Köhler (K.).— Higher analytic torsion forms for direct images and anomaly formulas, J. Alg. Geom. 1 (1992), 647-684. Zbl0784.32023MR1174905
  6. Bismut (J.-M.) and Lebeau (G.).— Complex immersions and Quillen metrics, Publ. Math. IHES 74 (1991), 1-298. Zbl0784.32010MR1188532
  7. Burgos Gil (J. I.).— Green forms and their product, Duke Math. J. 75 (1994), 529-574. Zbl1044.14505MR1291696
  8. Burgos Gil (J. I.).— Arithmetic Chow rings and Deligne-Beilinson cohomology, J. Alg. Geom. 6 (1997), 335-377. Zbl0922.14002MR1489119
  9. Burgos Gil (J. I.), Freixas i Montplet (G.), and Liţcanu (R.).— Generalized holomorphic analytic torsion, J. Eur. Math. Soc. 16 (2014), p. 463-535. Zbl1305.58018MR3165730
  10. Burgos Gil (J. I.), Freixas i Montplet (G.), and Liţcanu (R.).— Hermitian structures on the derived category of coherent sheaves, J. Math. Pures Appl. (9) 97 (2012), no. 5, 424-459. Zbl1248.18011MR2914943
  11. Burgos Gil (J. I.), Kramer (J.), and Kühn (U.).— Arithmetic characteristic classes of automorphic vector bundles, Documenta Math. 10 (2005), 619-716. Zbl1080.14028MR2218402
  12. Burgos Gil (J. I.), Kramer (J.), and Kühn (U.).— Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu 6 (2007), no. 1, 1-172. Zbl1115.14013MR2285241
  13. Burgos Gil (J. I.) and Liţcanu (R.).— Singular Bott-Chern classes and the arithmetic Grothendieck-Riemann-Roch theorem for closed immersions, Doc. Math. 15 (2010), 73-176. Zbl1192.14019MR2628847
  14. Faltings (G.).— Calculus on arithmetic surfaces, Annals of Math. 119 (1984), 387-424. Zbl0559.14005MR740897
  15. Faltings (G.).— Lectures on the arithmetic Riemann-Roch theorem, Annals of Math. Studies, vol. 127, Princeton University Press, 1992. Zbl0744.14016MR1158661
  16. Gillet (H.), Rössler (D.), and Soulé (C.).— An arithmetic Riemann-Roch theorem in higher degrees, Ann. Inst. Fourier 58 (2008), 2169-2189. Zbl1152.14023MR2473633
  17. Gillet (H.) and Soulé (C.).— Arithmetic intersection theory, Publ. Math. I.H.E.S. 72 (1990), 94-174. Zbl0741.14012MR1087394
  18. Gillet (H.) and Soulé (C.).— Characteristic classes for algebraic vector bundles with hermitian metric I, II, Annals of Math. 131 (1990), 163-203, 205-238. Zbl0715.14006MR1038362
  19. Gillet (H.) and Soulé (C.).— Analytic torsion and the arithmetic Todd genus, Topology 30 (1991), no. 1, 21-54, With an appendix by D. Zagier. Zbl0787.14005MR1081932
  20. Gillet (H.) and Soulé (C.).— An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), 473-543. Zbl0777.14008MR1189489
  21. Griffiths (P.) and Harris (J.).— Principles of algebraic geometry, John Wiley & Sons, Inc., 1994. Zbl0836.14001MR1288523
  22. Hörmander (L.).— The analysis of linear partial differential operators. I, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1990, Distribution theory and Fourier analysis. Zbl0712.35001MR1065993
  23. Kawaguchi (S.) and Moriwaki (A.).— Inequalities for semistable families of arithmetic varieties, J. Math. Kyoto Univ. 41 (2001), no. 1, 97-182. Zbl1041.14007MR1844863

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.