The arithmetic Grothendieck-Riemann-Roch theorem for general projective morphisms
José Ignacio Burgos Gil; Gerard Freixas i Montplet; Răzvan Liţcanu
Annales de la faculté des sciences de Toulouse Mathématiques (2014)
- Volume: 23, Issue: 3, page 513-559
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topBurgos Gil, José Ignacio, Freixas i Montplet, Gerard, and Liţcanu, Răzvan. "The arithmetic Grothendieck-Riemann-Roch theorem for general projective morphisms." Annales de la faculté des sciences de Toulouse Mathématiques 23.3 (2014): 513-559. <http://eudml.org/doc/275359>.
@article{BurgosGil2014,
abstract = {In this paper we extend the arithmetic Grothendieck-Riemann-Roch Theorem to projective morphisms between arithmetic varieties that are not necessarily smooth over the complex numbers. The main ingredient of this extension is the theory of generalized holomorphic analytic torsion classes previously developed by the authors.},
author = {Burgos Gil, José Ignacio, Freixas i Montplet, Gerard, Liţcanu, Răzvan},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Arakelov theory; Grothendieck-Riemann-Roch theorem; projective morphism},
language = {eng},
number = {3},
pages = {513-559},
publisher = {Université Paul Sabatier, Toulouse},
title = {The arithmetic Grothendieck-Riemann-Roch theorem for general projective morphisms},
url = {http://eudml.org/doc/275359},
volume = {23},
year = {2014},
}
TY - JOUR
AU - Burgos Gil, José Ignacio
AU - Freixas i Montplet, Gerard
AU - Liţcanu, Răzvan
TI - The arithmetic Grothendieck-Riemann-Roch theorem for general projective morphisms
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2014
PB - Université Paul Sabatier, Toulouse
VL - 23
IS - 3
SP - 513
EP - 559
AB - In this paper we extend the arithmetic Grothendieck-Riemann-Roch Theorem to projective morphisms between arithmetic varieties that are not necessarily smooth over the complex numbers. The main ingredient of this extension is the theory of generalized holomorphic analytic torsion classes previously developed by the authors.
LA - eng
KW - Arakelov theory; Grothendieck-Riemann-Roch theorem; projective morphism
UR - http://eudml.org/doc/275359
ER -
References
top- Bismut (J.-M.).— Holomorphic families of immersions and higher analytic torsion forms, Astérisque, vol. 244, SMF, 1997. Zbl0899.32013MR1623496
- Bismut (J.-M.), Gillet (H.), and Soulé (C.).— Analytic torsion and holomorphic determinant bundles I, Comm. Math. Phys. 115 (1988), 49-78. Zbl0651.32017MR929146
- Bismut (J.-M.), Gillet (H.), and Soulé (C.).— Analytic torsion and holomorphic determinant bundles II, Comm. Math. Phys. 115 (1988), 79-126. Zbl0651.32017MR929147
- Bismut (J.-M.), Gillet (H.), and Soulé (C.).— Analytic torsion and holomorphic determinant bundles III, Comm. Math. Phys. 115 (1988), 301-351. Zbl0651.32017MR931666
- Bismut (J.-M.) and Köhler (K.).— Higher analytic torsion forms for direct images and anomaly formulas, J. Alg. Geom. 1 (1992), 647-684. Zbl0784.32023MR1174905
- Bismut (J.-M.) and Lebeau (G.).— Complex immersions and Quillen metrics, Publ. Math. IHES 74 (1991), 1-298. Zbl0784.32010MR1188532
- Burgos Gil (J. I.).— Green forms and their product, Duke Math. J. 75 (1994), 529-574. Zbl1044.14505MR1291696
- Burgos Gil (J. I.).— Arithmetic Chow rings and Deligne-Beilinson cohomology, J. Alg. Geom. 6 (1997), 335-377. Zbl0922.14002MR1489119
- Burgos Gil (J. I.), Freixas i Montplet (G.), and Liţcanu (R.).— Generalized holomorphic analytic torsion, J. Eur. Math. Soc. 16 (2014), p. 463-535. Zbl1305.58018MR3165730
- Burgos Gil (J. I.), Freixas i Montplet (G.), and Liţcanu (R.).— Hermitian structures on the derived category of coherent sheaves, J. Math. Pures Appl. (9) 97 (2012), no. 5, 424-459. Zbl1248.18011MR2914943
- Burgos Gil (J. I.), Kramer (J.), and Kühn (U.).— Arithmetic characteristic classes of automorphic vector bundles, Documenta Math. 10 (2005), 619-716. Zbl1080.14028MR2218402
- Burgos Gil (J. I.), Kramer (J.), and Kühn (U.).— Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu 6 (2007), no. 1, 1-172. Zbl1115.14013MR2285241
- Burgos Gil (J. I.) and Liţcanu (R.).— Singular Bott-Chern classes and the arithmetic Grothendieck-Riemann-Roch theorem for closed immersions, Doc. Math. 15 (2010), 73-176. Zbl1192.14019MR2628847
- Faltings (G.).— Calculus on arithmetic surfaces, Annals of Math. 119 (1984), 387-424. Zbl0559.14005MR740897
- Faltings (G.).— Lectures on the arithmetic Riemann-Roch theorem, Annals of Math. Studies, vol. 127, Princeton University Press, 1992. Zbl0744.14016MR1158661
- Gillet (H.), Rössler (D.), and Soulé (C.).— An arithmetic Riemann-Roch theorem in higher degrees, Ann. Inst. Fourier 58 (2008), 2169-2189. Zbl1152.14023MR2473633
- Gillet (H.) and Soulé (C.).— Arithmetic intersection theory, Publ. Math. I.H.E.S. 72 (1990), 94-174. Zbl0741.14012MR1087394
- Gillet (H.) and Soulé (C.).— Characteristic classes for algebraic vector bundles with hermitian metric I, II, Annals of Math. 131 (1990), 163-203, 205-238. Zbl0715.14006MR1038362
- Gillet (H.) and Soulé (C.).— Analytic torsion and the arithmetic Todd genus, Topology 30 (1991), no. 1, 21-54, With an appendix by D. Zagier. Zbl0787.14005MR1081932
- Gillet (H.) and Soulé (C.).— An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), 473-543. Zbl0777.14008MR1189489
- Griffiths (P.) and Harris (J.).— Principles of algebraic geometry, John Wiley & Sons, Inc., 1994. Zbl0836.14001MR1288523
- Hörmander (L.).— The analysis of linear partial differential operators. I, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1990, Distribution theory and Fourier analysis. Zbl0712.35001MR1065993
- Kawaguchi (S.) and Moriwaki (A.).— Inequalities for semistable families of arithmetic varieties, J. Math. Kyoto Univ. 41 (2001), no. 1, 97-182. Zbl1041.14007MR1844863
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.