The dendriform module on the cyclic group

Frédéric Chapoton[1]

  • [1] Université Claude Bernard Lyon 1 Institut Camille Jordan 21 avenue Claude Bernard 69622 Villeurbanne cedex (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 7, page 2333-2350
  • ISSN: 0373-0956

Abstract

top
It is known that the Dendriform operad is in fact an anticyclic operad. This refined structure defines in particular a matrix of finite order acting on the vector space spanned by planar binary trees. We compute here its characteristic polynomial and propose a compatible conjecture for the characteristic polynomial of the Coxeter transformation for the Tamari lattice, which is essentially a square root of this matrix.

How to cite

top

Chapoton, Frédéric. "Le module dendriforme sur le groupe cyclique." Annales de l’institut Fourier 58.7 (2008): 2333-2350. <http://eudml.org/doc/10380>.

@article{Chapoton2008,
abstract = {La structure d’opérade anticyclique de l’opérade dendriforme donne en particulier une matrice d’ordre $n$ agissant sur l’espace engendré par les arbres binaires plans à $n$ feuilles. On calcule le polynôme caractéristique de cette matrice. On propose aussi une conjecture compatible pour le polynôme caractéristique de la transformation de Coxeter du poset de Tamari, qui est essentiellement une racine carrée de cette matrice.},
affiliation = {Université Claude Bernard Lyon 1 Institut Camille Jordan 21 avenue Claude Bernard 69622 Villeurbanne cedex (France)},
author = {Chapoton, Frédéric},
journal = {Annales de l’institut Fourier},
keywords = {Dendriform operad; anticyclic operad; Tamari lattice; Coxeter transformation},
language = {fre},
number = {7},
pages = {2333-2350},
publisher = {Association des Annales de l’institut Fourier},
title = {Le module dendriforme sur le groupe cyclique},
url = {http://eudml.org/doc/10380},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Chapoton, Frédéric
TI - Le module dendriforme sur le groupe cyclique
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 7
SP - 2333
EP - 2350
AB - La structure d’opérade anticyclique de l’opérade dendriforme donne en particulier une matrice d’ordre $n$ agissant sur l’espace engendré par les arbres binaires plans à $n$ feuilles. On calcule le polynôme caractéristique de cette matrice. On propose aussi une conjecture compatible pour le polynôme caractéristique de la transformation de Coxeter du poset de Tamari, qui est essentiellement une racine carrée de cette matrice.
LA - fre
KW - Dendriform operad; anticyclic operad; Tamari lattice; Coxeter transformation
UR - http://eudml.org/doc/10380
ER -

References

top
  1. M. Aguiar, F. Sottile, Structure of the Loday-Ronco Hopf algebra of trees, J. Algebra 295 (2006), 473-511 Zbl1099.16015MR2194965
  2. F. Chapoton, On some anticyclic operads, Algebr. Geom. Topol. 5 (2005), 53-69 (electronic) Zbl1060.18004MR2135545
  3. F. Chapoton, The anticyclic operad of moulds, Int. Math. Res. Not. IMRN (2007) Zbl1149.18004MR2363304
  4. Frédéric Chapoton, On the Coxeter transformations for Tamari posets, Canad. Math. Bull. 50 (2007), 182-190 Zbl1147.18007MR2317440
  5. C. W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, (1962), Interscience Publishers, a division of John Wiley & Sons, New York-London Zbl0131.25601MR144979
  6. F. Hivert, J.-C. Novelli, J.-Y. Thibon, Un analogue du monoïde plaxique pour les arbres binaires de recherche, C. R. Math. Acad. Sci. Paris 335 (2002), 577-580 Zbl1013.05026MR1941297
  7. F. Hivert, J.-C. Novelli, J.-Y. Thibon, Sur quelques propriétés de l’algèbre des arbres binaires, C. R. Math. Acad. Sci. Paris 337 (2003), 565-568 Zbl1029.05033
  8. F. Hivert, J.-C. Novelli, J.-Y. Thibon, The algebra of binary search trees, Theoret. Comput. Sci. 339 (2005), 129-165 Zbl1072.05052MR2142078
  9. S. Huang, D. Tamari, Problems of associativity : A simple proof for the lattice property of systems ordered by a semi-associative law, J. Combinatorial Theory Ser. A 13 (1972), 7-13 Zbl0248.06003MR306064
  10. J.-L. Loday, Dialgebras, Dialgebras and related operads 1763 (2001), 7-66, Springer, Berlin Zbl0999.17002MR1860994
  11. J.-L. Loday, Arithmetree, J. Algebra 258 (2002), 275-309 Zbl1063.16044MR1958907
  12. J.-L. Loday, M. O. Ronco, Hopf algebra of the planar binary trees, Adv. Math. 139 (1998), 293-309 Zbl0926.16032MR1654173
  13. J.-L. Loday, M. O. Ronco, Order structure on the algebra of permutations and of planar binary trees, J. Algebraic Combin. 15 (2002), 253-270 Zbl0998.05013MR1900627
  14. I. G. Macdonald, Symmetric functions and Hall polynomials, (1995), The Clarendon Press Oxford University Press, New York Zbl0487.20007MR1354144

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.