Sur une opérade ternaire liée aux treillis de Tamari
- [1] Institut Camille Jordan, Université Claude Bernard Lyon 1, Bâtiment Braconnier, 21 Avenue Claude Bernard, F-69622 Villeurbanne Cedex
Annales de la faculté des sciences de Toulouse Mathématiques (2011)
- Volume: 20, Issue: 4, page 843-869
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topChapoton, Frédéric. "Sur une opérade ternaire liée aux treillis de Tamari." Annales de la faculté des sciences de Toulouse Mathématiques 20.4 (2011): 843-869. <http://eudml.org/doc/219722>.
@article{Chapoton2011,
abstract = {On introduit une opérade anticyclique $\{\bf V\}$ définie par une présentation ternaire quadratique. On montre qu’elle admet une base indexée par les arbres binaires planaires. On relie cette construction à la famille des treillis de Tamari $(\mathsf \{Y\}_n)_\{n \ge 0\}$ en construisant un isomorphisme entre $\{\bf V\}(2n+1)$ et le groupe de Grothendieck de la catégorie $\mathsf \{\}\mod \{\mathsf \{Y\}\}_n$ qui envoie la base de $\{\bf V\}(2n+1)$ sur les classes des modules projectifs et qui transforme la structure anticyclique de $\{\bf V\}$ en la transformation de Coxeter de la catégorie dérivée de $\mathsf \{\}\mod \{\mathsf \{Y\}\}_n$. La dualité de Koszul des opérades permet alors de calculer le polynôme caractéristique de cette transformation de Coxeter en utilisant une transformation de Legendre.},
affiliation = {Institut Camille Jordan, Université Claude Bernard Lyon 1, Bâtiment Braconnier, 21 Avenue Claude Bernard, F-69622 Villeurbanne Cedex},
author = {Chapoton, Frédéric},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {partial associative operad; cyclic operad; Tamari order},
language = {fre},
month = {7},
number = {4},
pages = {843-869},
publisher = {Université Paul Sabatier, Toulouse},
title = {Sur une opérade ternaire liée aux treillis de Tamari},
url = {http://eudml.org/doc/219722},
volume = {20},
year = {2011},
}
TY - JOUR
AU - Chapoton, Frédéric
TI - Sur une opérade ternaire liée aux treillis de Tamari
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/7//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 4
SP - 843
EP - 869
AB - On introduit une opérade anticyclique ${\bf V}$ définie par une présentation ternaire quadratique. On montre qu’elle admet une base indexée par les arbres binaires planaires. On relie cette construction à la famille des treillis de Tamari $(\mathsf {Y}_n)_{n \ge 0}$ en construisant un isomorphisme entre ${\bf V}(2n+1)$ et le groupe de Grothendieck de la catégorie $\mathsf {}\mod {\mathsf {Y}}_n$ qui envoie la base de ${\bf V}(2n+1)$ sur les classes des modules projectifs et qui transforme la structure anticyclique de ${\bf V}$ en la transformation de Coxeter de la catégorie dérivée de $\mathsf {}\mod {\mathsf {Y}}_n$. La dualité de Koszul des opérades permet alors de calculer le polynôme caractéristique de cette transformation de Coxeter en utilisant une transformation de Legendre.
LA - fre
KW - partial associative operad; cyclic operad; Tamari order
UR - http://eudml.org/doc/219722
ER -
References
top- Aguiar (M.) and Sottile (F.).— Structure of the Loday-Ronco Hopf algebra of trees. J. Algebra, 295(2) p. 473-511 (2006). Zbl1099.16015MR2194965
- Chapoton (F.).— On the Coxeter transformations for Tamari posets. Canad. Math. Bull., 50(2) p. 182-190 (2007). Zbl1147.18007MR2317440
- Chapoton (F.).— Le module dendriforme sur le groupe cyclique. Ann. Inst. Fourier (Grenoble), 58(7) p. 2333-2350 (2008). Zbl1163.18004MR2498353
- Chapoton (F.).— Categorification of the dendriform operad. In Jean-Louis Loday and Bruno Vallette, editors, Proceedings of Operads 2009, Séminaire et Congrès. SMF, 2012. oai :arXiv.org :0909.2751. Zbl1277.18010
- Curtis (C. W.) and Irving Reiner (I.).— Representation theory of finite groups and associative algebras. Pure and Applied Mathematics, Vol. XI. Interscience Publishers, a division of John Wiley & Sons, New York-London (1962). Zbl0131.25601MR144979
- Dotsenko (V.) and Khoroshkin (A.).— Gröbner bases for operads. Duke Math. J., 153(2) p. 363-396 (2010). Zbl1208.18007MR2667136
- Ebrahimi-Fard (K.) and Manchon (D.).— Dendriform equations. J. Algebra, 322(11) p. 4053-4079 (2009). Zbl1229.17001MR2556138
- Ebrahimi-Fard (K.), Manchon (D.), and Patras (F.).— New identities in dendriform algebras. J. Algebra, 320(2) p. 708-727 (2008). Zbl1153.17003MR2422313
- Fomin (S.) and Zelevinsky (A.).— Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2) p. 497-529 (electronic) (2002). Zbl1021.16017MR1887642
- Friedman (H.) and Tamari (D.).— Problèmes d’associativité : Une structure de treillis finis induite par une loi demi-associative. J. Combinatorial Theory, 2 p. 215-242 (1967). Zbl0158.01904MR238984
- Getzler (E.).— Operads and moduli spaces of genus 0 Riemann surfaces. In The moduli space of curves (Texel Island, 1994), volume 129 of Progr. Math., pages 199-230. Birkhäuser Boston, Boston, MA (1995). Zbl0851.18005MR1363058
- Getzler (E.) and Kapranov (M. M.).— Cyclic operads and cyclic homology. In Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, p. 167-201. Int. Press, Cambridge, MA (1995). Zbl0883.18013MR1358617
- Getzler (E.) and Kapranov (M. M.).— Modular operads. Compositio Math., 110(1) p. 65-126 (1998). Zbl0894.18005MR1601666
- Gnedbaye (A. V.).— Opérades des algèbres (k + 1)-aires. In Operads : Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), volume 202 of Contemp. Math., pages 83-113. Amer. Math. Soc., Providence, RI (1997). Zbl0880.17003MR1436918
- Happel (D.).— Triangulated categories in the representation theory of finite-dimensional algebras, volume 119 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1988). Zbl0635.16017MR935124
- Happel (D.) and Unger (L.).— On a partial order of tilting modules. Algebr. Represent. Theory, 8(2) p. 147-156 (2005). Zbl1110.16011MR2162278
- Hivert (F.), Novelli (J.-C.), and Thibon (J.-Y.).— The algebra of binary search trees. Theoret. Comput. Sci., 339(1) p. 129-165 (2005). Zbl1072.05052MR2142078
- Hoffbeck (E.).— A Poincaré-Birkhoff-Witt criterion for Koszul operads. Manuscripta Math., 131(1-2) p. 87-110 (2010). Zbl1207.18009MR2574993
- Huang (S.) and Tamari (D.).— Problems of associativity : A simple proof for the lattice property of systems ordered by a semi-associative law. J. Combinatorial Theory Ser. A, 13 p. 7-13 (1972). Zbl0248.06003MR306064
- Ladkani (S.).— Universal derived equivalences of posets of cluster tilting objects (2007).
- Ladkani (S.).— Universal derived equivalences of posets of tilting modules (2007).
- Ladkani (S.).— On derived equivalences of categories of sheaves over finite posets. J. Pure Appl. Algebra, 212(2) p. 435-451 (2008). Zbl1127.18005MR2357344
- Lenzing (H.).— Coxeter transformations associated with finite-dimensional algebras. In Computational methods for representations of groups and algebras (Essen, 1997), volume 173 of Progr. Math., pages 287-308. Birkhäuser, Basel (1999). Zbl0941.16007MR1714618
- Loday (J.-L.).— Dialgebras. In Dialgebras and related operads, volume 1763 of Lecture Notes in Math., pages 7-66. Springer, Berlin (2001). Zbl0999.17002MR1860994
- Loday (J.-L.).— Arithmetree. J. Algebra, 258(1) p. 275-309 (2002). Special issue in celebration of Claudio Procesis 60th birthday. Zbl1063.16044MR1958907
- Loday (J.-L.) and Ronco (M. O.).— Order structure on the algebra of permutations and of planar binary trees. J. Algebraic Combin., 15(3) p. 253-270 (2002). Zbl0998.05013MR1900627
- Loday (J.-L.) and Vallette (B.).— Algebraic Operads. à paraître, 2010. xviii+512 pp.
- Macdonald (I. G.).— Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, second edition, 1995. With contributions by A. Zelevinsky, Oxford Science Publications. Zbl0487.20007MR1354144
- Markl (M.) and Remm (E.).— (Non-)Koszulity of operads for n-ary algebras, cohomology and deformations (2009).
- Markl (M.), Shnider (S.), and Stasheff (J.).— Operads in algebra, topology and physics, volume 96 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2002). Zbl1017.18001MR1898414
- Reading (N.).— Cambrian lattices. Adv. Math., 205(2) p. 313-353 (2006). Zbl1106.20033MR2258260
- Riedtmann (C.) and Schofield (A.).— On a simplicial complex associated with tilting modules. Comment. Math. Helv., 66(1) p. 70-78 (1991). Zbl0790.16013MR1090165
- Ronco (M.).— Primitive elements in a free dendriform algebra. In New trends in Hopf algebra theory (La Falda, 1999), volume 267 of Contemp. Math., pages 245-263. Amer. Math. Soc., Providence, RI (2000). Zbl0974.16035MR1800716
- Tamari (D.).— The algebra of bracketings and their enumeration. Nieuw Arch. Wisk. (3), 10 p. 131-146 (1962). Zbl0109.24502MR146227
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.