Non-commutative differential geometry

Alain Connes

Publications Mathématiques de l'IHÉS (1985)

  • Volume: 62, page 41-144
  • ISSN: 0073-8301

How to cite


Connes, Alain. "Non-commutative differential geometry." Publications Mathématiques de l'IHÉS 62 (1985): 41-144. <>.

author = {Connes, Alain},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {noncommutative differential geometry; characteristic classes; cyclic cohomology; differential forms; trace; Hochschild boundary operator; subcomplex; Hochschild complex; Ext-theory; Chern-character; –homology; Kasparov's KK-theory; Schatten class; de Rham homology group; long exact sequence; irrational rotation algebra},
language = {eng},
pages = {41-144},
publisher = {Institut des Hautes Études Scientifiques},
title = {Non-commutative differential geometry},
url = {},
volume = {62},
year = {1985},

AU - Connes, Alain
TI - Non-commutative differential geometry
JO - Publications Mathématiques de l'IHÉS
PY - 1985
PB - Institut des Hautes Études Scientifiques
VL - 62
SP - 41
EP - 144
LA - eng
KW - noncommutative differential geometry; characteristic classes; cyclic cohomology; differential forms; trace; Hochschild boundary operator; subcomplex; Hochschild complex; Ext-theory; Chern-character; –homology; Kasparov's KK-theory; Schatten class; de Rham homology group; long exact sequence; irrational rotation algebra
UR -
ER -


  1. [I] W. ARVESON, The harmonic analysis of automorphism groups, Operator algebras and applications, Proc. Symposia Pure Math. 38 (I982), part I, I99-269. Zbl0506.46047MR84m:46085
  2. [2] M. F. ATIYAH, Transversally elliptic operators and compact groups, Lecture Notes in Math. 401, Berlin-New York, Springer (I974). Zbl0297.58009MR58 #2910
  3. [3] M. F. ATIYAH, Global theory of elliptic operators, Proc. Internat. Conf. on functional analysis and related topics, Tokyo, Univ. of Tokyo Press (I970), 2I-29. Zbl0193.43601
  4. [4] M. F. ATIYAH, K-theory, Benjamin (I967). Zbl0159.53302
  5. [5] M. F. ATIYAH and I. SINGER, The index of elliptic operators IV, Ann. of Math. 93 (I97I), II9-I38. Zbl0212.28603
  6. [6] S. BAAJ et P. JULG, Théorie bivariante de Kasparov et opérateurs non bornés dans les C* modules Hilbertiens, C. r. Acad. Sci. Paris, Série I, 296 (I983), 875-878. Zbl0551.46041MR84m:46091
  7. [7] P. BAUM and A. CONNES, Geometric K-theory for Lie groups and Foliations, Preprint I.H.E.S., I982. Zbl0985.46042
  8. [8] P. BAUM and A. CONNES, Leafwise homotopy equivalence and rational Pontrjagin classes, Preprint I.H.E.S., I983. Zbl0641.57008
  9. [9] P. BAUM and R. DOUGLAS, K-homology and index theory, Operator algebras and applications, Proc. Symposia Pure Math. 38 (I982), part I, II7-I73. Zbl0532.55004MR84d:58075
  10. [I0] O. BRATTELI, Inductive limits of finite dimensional C*-algebras, Trans. Am. Math. Soc. 171 (I972), I95-234. Zbl0264.46057MR47 #844
  11. [II] L. G. BROWN, R. DOUGLAS and P. A. FILLMORE, Extensions of C*-algebras and K-homology, Ann. of Math. (2) 105 (I977), 265-324. Zbl0376.46036MR56 #16399
  12. [I2] R. CAREY and J. D. PINCUS, Almost commuting algebras, K-theory and operator algebras, Lecture Notes in Math. 575, Berlin-New York, Springer (I977). Zbl0358.46031MR58 #23652
  13. [I3] H. CARTAN and S. EILENBERG, Homological algebra, Princeton University Press (I956). Zbl0075.24305
  14. [I4] A. CONNES, The von Neumann algebra of a foliation, Lecture Notes in Physics 80 (I978), I45-I5I, Berlin-New York, Springer. Zbl0433.46056MR80i:46057
  15. [I5] A. CONNES, Sur la théorie non commutative de l'intégration, Algèbres d'opérateurs, Lecture Notes in Math. 725, Berlin-New York, Springer (I979). Zbl0412.46053MR81g:46090
  16. [I6] A. CONNES, A Survey of foliations and operator algebras, Operator algebras and applications, Proc. Symposia Pure Math. 38 (I982), Part I, 52I-628. Zbl0531.57023MR84m:58140
  17. [I7] A. CONNES, Classification des facteurs, Operator algebras and applications, Proc. Symposia Pure Math. 38 (I982), Part II, 43-I09. Zbl0503.46043MR84e:46068
  18. [I8] A. CONNES and G. SKANDALIS, The longitudinal index theorem for foliations, Publ. R.I.M.S., Kyoto, 20 (I984), II39-II83. Zbl0575.58030MR87h:58209
  19. [I9] A. CONNES, C* algèbres et géométrie différentielle, C.r. Acad. Sci. Paris, Série I, 290 (I980), 599-604. Zbl0433.46057MR81c:46053
  20. [20] A CONNES, Cyclic cohomology and the transverse fundamental class of a foliation, Preprint I.H.E.S. M/84/7 (I984). Zbl0647.46054
  21. [2I] A. CONNES, Spectral sequence and homology of currents for operator algebras. Math. Forschungsinstitut Oberwolfach Tagungsbericht 42/8I, Funktionalanalysis und C*-Algebren, 27-9/3-I0-I98I. 
  22. [22] J. CUNTZ and W. KRIEGER, A class of C*-algebras and topological Markov chains, Invent. Math. 56 (I980), 25I-268. Zbl0434.46045MR82f:46073a
  23. [23] J. CUNTZ, K-theoretic amenability for discrete groups, J. Reine Angew. Math. 344 (I983), I80-I95. Zbl0511.46066MR86e:46064
  24. [24] R. DOUGLAS, C*-algebra extensions and K-homology, Annals of Math. Studies 95, Princeton University Press, I980. Zbl0458.46049MR82c:46082
  25. [25] R. DOUGLAS and D. VOICULESCU, On the smoothness of sphere extensions, J. Operator Theory 6 (I) (I98I), I03. Zbl0501.46055MR83h:46080
  26. [26] E. G. EFFROS, D. E HANDELMAN and C. L. SHEN, Dimension groups and their affine representations, Amer. J. Math. 102 (I980), 385-407. Zbl0457.46047MR83g:46061
  27. [27] G. ELLIOTT, On the classification of inductive limits of sequences of semi-simple finite dimensional algebras, J. Alg. 38 (I976), 29-44. Zbl0323.46063MR53 #1279
  28. [28] E. GETZLER, Pseudodifferential operators on supermanifolds and the Atiyah Singer index theorem, Commun. Math. Physics 92 (I983), I63-I78. Zbl0543.58026MR86a:58104
  29. [29] A. GROTHENDIECK, Produits tensoriels topologiques, Memoirs Am. Math. Soc. 16 (I955). Zbl0123.30301
  30. [30] J. HELTON and R. HOWE, Integral operators, commutators, traces, index and homology, Proc. of Conf. on operator theory, Lecture Notes in Math. 345, Berlin-New York, Springer (I973). Zbl0268.47054MR52 #11652
  31. [3I] J. HELTON and R. HOWE, Traces of commutators of integral operators, Acta Math. 135 (I975), 27I-305. Zbl0332.47010MR55 #11106
  32. [32] M. HERMAN, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. I.H.E.S. 49 (I979). Zbl0448.58019
  33. [33] G. HOCHSCHILD, B. KOSTANT and A. ROSENBERG, Differential forms on regular affine algebras, Trans. Am. Math. Soc. 102 (I962), 383-408. Zbl0102.27701MR26 #167
  34. [34] L. HÖRMANDER, The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math. 32 (I979), 359-443. Zbl0388.47032
  35. [35] B. JOHNSON, Cohomology in Banach algebras, Memoirs Am. Math. Soc. 127 (I972). Zbl0256.18014MR51 #11130
  36. [36] B. JOHNSON, Introduction to cohomology in Banach algebras, in Algebras in Analysis, Ed. Williamson, New York, Academic Press (I975), 84-99. Zbl0306.46065MR54 #5835
  37. [37] P. JULG and A. VALETTE, K-moyennabilité pour les groupes opérant sur les arbres, C. r. Acad. Sci. Paris, Série I, 296 (I983), 977-980. Zbl0537.46055MR86m:46063
  38. [38] D. S. KAHN, J. KAMINKER and C. SCHOCHET, Generalized homology theories on compact metric spaces, Michigan Math. J. 24 (I977), 203-224. Zbl0384.55001MR57 #13921
  39. [39] M. KAROUBI, Connexions, courbures et classes caractéristiques en K-théorie algébrique, Canadian Math. Soc. Proc., Vol. 2, part I (I982), I9-27. Zbl0553.18006MR84f:57013
  40. [40] M. KAROUBI, K-theory. An introduction, Grundlehren der Math., Bd. 226 (I978), Springer Verlag. Zbl0382.55002MR58 #7605
  41. [4I] M. KAROUBI et O. VILLAMAYOR, K-théorie algébrique et K-théorie topologique I., Math. Scand. 28 (I97I), 265-307. Zbl0231.18018MR47 #1915
  42. [42] G. KASPAROV, K-functor and extensions of C*-algebras, Izv. Akad. Nauk SSSR, Ser. Mat. 44 (I980), 57I-636. Zbl0448.46051MR81m:58075
  43. [43] G. KASPAROV, K-theory, group C*-algebras and higher signatures, Conspectus, Chernogolovka (I983). Zbl0957.58020
  44. [44] G. KASPAROV, Lorentz groups : K-theory of unitary representations and crossed products, preprint, Chernogolovka, I983. Zbl0584.22004
  45. [45] B. KOSTANT, Graded manifolds, graded Lie theory and prequantization, Lecture Notes in Math. 570, Berlin-New York, Springer (I975). Zbl0358.53024MR58 #28326
  46. [46] J. L. LODAY and D. QUILLEN, Cyclic homology and the Lie algebra of matrices, C. r. Acad. Sci. Paris, Série I, 296 (I983), 295-297. Zbl0536.17006MR85d:17010
  47. [47] S. MAC LANE, Homology, Berlin-New York, Springer (I975). 
  48. [48] J. MILNOR, Introduction to algebraic K-theory, Annals of Math. Studies, 72, Princeton Univ. Press. Zbl0237.18005MR50 #2304
  49. [49] J. MILNOR and D. STASHEFF, Characteristic classes, Annals of Math. Studies 76, Princeton Univ. Press. Zbl0298.57008
  50. [50] A. S. MIŠčENKO, Infinite dimensional representations of discrete groups and higher signatures, Math. USSR Izv. 8 (I974), 85-II2. Zbl0299.57010
  51. [5I] G. PEDERSEN, C*-algebras and their automorphism groups, New York, Academic Press (I979). 
  52. [52] M. PENINGTON, K-theory and C*-algebras of Lie groups and Foliations, D. Phil. thesis, Oxford, Michaelmas, Term., I983. 
  53. [53] M. PENINGTON and R. PLYMEN, The Dirac operator and the principal series for complex semi-simple Lie groups, J. Funct. Analysis 53 (I983), 269-286. Zbl0542.22013MR85d:22016
  54. [54] M. PIMSNER and D. VOICULESCU, Exact sequences for K-groups and Ext groups of certain cross-product C*-algebras, J. of operator theory 4 (I980), 93-II8. Zbl0474.46059MR82c:46074
  55. [55] M. PIMSNER and D. VOICULESCU, Imbedding the irrational rotation C* algebra into an AF algebra, J. of operator theory 4 (I980), 20I-2II. Zbl0525.46031MR82d:46086
  56. [56] M. PIMSNER and D. VOICULESCU, K groups of reduced crossed products by free groups, J. operator theory 8 (I) (I982), I3I-I56. Zbl0533.46045MR84d:46092
  57. [57] M. REED and B. SIMON, Fourier Analysis, Self adjointness, New York, Academic Press (I975). 
  58. [58] M. RIEFFEL, C*-algebras associated with irrational rotations, Pac. J. of Math. 95 (2) (I98I), 4I5-429. Zbl0499.46039
  59. [59] J. ROSENBERG, C*-algebras, positive scalar curvature and the Novikov conjecture, Publ. Math. I.H.E.S. 58 (I984), 409-424. Zbl0526.53044
  60. [60] W. RUDIN, Real and complex analysis, New York, McGraw Hill (I966). Zbl0142.01701
  61. [6I] I. SEGAL, Quantized differential forms, Topology 7 (I968), I47-I72. Zbl0162.40602MR38 #1113
  62. [62] I. SEGAL, Quantization of the de Rham complex, Global Analysis, Proc. Symp. Pure Math. 16 (I970), 205-2I0. Zbl0214.49001MR42 #1157
  63. [63] B. SIMON, Trace ideals and their applications, London Math. Soc. Lecture Notes 35, Cambridge Univ. Press (I979). Zbl0423.47001MR80k:47048
  64. [64] I. M. SINGER, Some remarks on operator theory and index theory, Lecture Notes in Math. 575 (I977), I28-I38, New York, Springer. Zbl0444.47040MR57 #7699
  65. [65] J. L. TAYLOR, Topological invariants of the maximal ideal space of a Banach algebra, Advances in Math. 19 (I976), I49-206. Zbl0323.46058
  66. [66] A. M. TORPE, K-theory for the leaf space of foliations by Reeb components, J. Funct. Analysis 61 (I985), I5-7I. Zbl0594.46062MR86h:46102
  67. [67] B. L. TSIGAN, Homology of matrix Lie algebras over rings and Hochschild homology, Uspekhi Math. Nauk. 38 (I983), 2I7-2I8. 
  68. [68] A. VALETTE, K-Theory for the reduced C*-algebra of semisimple Lie groups with real rank one, Quarterly J. of Math., Oxford, Série 2, 35 (I984), 334-359. Zbl0545.22006
  69. [69] A. WASSERMAN, Une démonstration de la conjecture de Connes-Kasparov, to appear in C. r. Acad. Sci. Paris. 
  70. [70] A. WEIL, Elliptic functions according to Eisenstein and Kronecker, Erg. der Math., vol. 88, Berlin-New York, Springer (I976). Zbl0318.33004MR58 #27769a
  71. [7I] R. WOOD, Banach algebras and Bott periodicity, Topology 4 (I965-I966), 37I-389. Zbl0163.36702MR32 #3062

Citations in EuDML Documents

  1. R. Coquereaux, Algebraic Superconnections, S U ( 2 1 ) and Electroweak Interactions
  2. Shahn Majid, Braided Groups
  3. R. Budzyński, W. Kondracki, Quantum spaces: notes and comments on a lecture by S. L. Woronowicz
  4. Mićo Đurđević, Quantum principal bundles and their characteristic classes
  5. Konrad Schmüdgen, Axel Schüler, Left-covariant differential calculi on S L q ( N )
  6. D. Bernard, À propos du calcul différentiel sur les groupes quantiques
  7. Markus Engeli, Giovanni Felder, A Riemann-Roch-Hirzebruch formula for traces of differential operators
  8. Max Karoubi, Formes topologiques non commutatives
  9. A. L. Carey, K. C. Hannabuss, Temperature states on gauge groups
  10. Thomas Tradler, The Batalin-Vilkovisky Algebra on Hochschild Cohomology Induced by Infinity Inner Products

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.