Singular Hecke algebras, Markov traces, and HOMFLY-type invariants
Luis Paris[1]; Loïc Rabenda[1]
- [1] Université de Bourgogne Institut de Mathématiques de Bourgogne UMR 5584 du CNRS B.P. 47870 21078 Dijon cedex (France)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 7, page 2413-2443
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topParis, Luis, and Rabenda, Loïc. "Singular Hecke algebras, Markov traces, and HOMFLY-type invariants." Annales de l’institut Fourier 58.7 (2008): 2413-2443. <http://eudml.org/doc/10383>.
@article{Paris2008,
abstract = {We define the singular Hecke algebra $\{\mathcal\{H\}\} (SB_n)$ as the quotient of the singular braid monoid algebra $\{\mathbb\{C\}\} (q) [SB_n]$ by the Hecke relations $\sigma _k^2 = (q-1) \sigma _k +q$, $1 \le k\le n-1$. We define the notion of Markov trace in this context, fixing the number $d$ of singular points, and we prove that a Markov trace determines an invariant on the links with $d$ singular points which satisfies some skein relation. Let $\{\rm TR\}_d$ denote the set of Markov traces with $d$ singular points. This is a $\{\mathbb\{C\}\} (q,z)$-vector space. Our main result is that $\{\rm TR\}_d$ is of dimension $d+1$. This result is completed with an explicit construction of a basis of $\{\rm TR\}_d$. Thanks to this result, we define a universal Markov trace and a universal HOMFLY-type invariant on singular links. This invariant is the unique invariant which satisfies some skein relation and some desingularization relation.},
affiliation = {Université de Bourgogne Institut de Mathématiques de Bourgogne UMR 5584 du CNRS B.P. 47870 21078 Dijon cedex (France); Université de Bourgogne Institut de Mathématiques de Bourgogne UMR 5584 du CNRS B.P. 47870 21078 Dijon cedex (France)},
author = {Paris, Luis, Rabenda, Loïc},
journal = {Annales de l’institut Fourier},
keywords = {Singular Hecke algebra; singular link; singular knot; singular braid; Markov trace; singular Hecke algebra; Markov trace, HOMFLY-type invariant.},
language = {eng},
number = {7},
pages = {2413-2443},
publisher = {Association des Annales de l’institut Fourier},
title = {Singular Hecke algebras, Markov traces, and HOMFLY-type invariants},
url = {http://eudml.org/doc/10383},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Paris, Luis
AU - Rabenda, Loïc
TI - Singular Hecke algebras, Markov traces, and HOMFLY-type invariants
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 7
SP - 2413
EP - 2443
AB - We define the singular Hecke algebra ${\mathcal{H}} (SB_n)$ as the quotient of the singular braid monoid algebra ${\mathbb{C}} (q) [SB_n]$ by the Hecke relations $\sigma _k^2 = (q-1) \sigma _k +q$, $1 \le k\le n-1$. We define the notion of Markov trace in this context, fixing the number $d$ of singular points, and we prove that a Markov trace determines an invariant on the links with $d$ singular points which satisfies some skein relation. Let ${\rm TR}_d$ denote the set of Markov traces with $d$ singular points. This is a ${\mathbb{C}} (q,z)$-vector space. Our main result is that ${\rm TR}_d$ is of dimension $d+1$. This result is completed with an explicit construction of a basis of ${\rm TR}_d$. Thanks to this result, we define a universal Markov trace and a universal HOMFLY-type invariant on singular links. This invariant is the unique invariant which satisfies some skein relation and some desingularization relation.
LA - eng
KW - Singular Hecke algebra; singular link; singular knot; singular braid; Markov trace; singular Hecke algebra; Markov trace, HOMFLY-type invariant.
UR - http://eudml.org/doc/10383
ER -
References
top- J. C. Baez, Link invariants of finite type and perturbation theory, Lett. Math. Phys. 26 (1992), 43-51 Zbl0792.57002MR1193625
- J. S. Birman, New points of view in knot theory, Bull. Amer. Math. Soc. (N.S.) 28 (1993), 253-287 Zbl0785.57001MR1191478
- P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 239-246 Zbl0572.57002MR776477
- F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. 20 (1969), 235-254 Zbl0194.03303MR248801
- B. Gemein, Singular braids and Markov’s theorem, J. Knot Theory Ramifications 6 (1997), 441-454 Zbl0885.57005
- V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 103-111 Zbl0564.57006MR766964
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388 Zbl0631.57005MR908150
- L. H. Kauffman, Invariants of graphs in three-space, Trans. Amer. Math. Soc. 311 (1989), 697-710 Zbl0672.57008MR946218
- L. H. Kauffman, P. Vogel, Link polynomials and a graphical calculus, J. Knot Theory Ramifications 1 (1992), 59-104 Zbl0795.57001MR1155094
- J. H. Przytycki, P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1988), 115-139 Zbl0655.57002MR945888
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.