Singular Hecke algebras, Markov traces, and HOMFLY-type invariants
Luis Paris[1]; Loïc Rabenda[1]
- [1] Université de Bourgogne Institut de Mathématiques de Bourgogne UMR 5584 du CNRS B.P. 47870 21078 Dijon cedex (France)
Annales de l’institut Fourier (2008)
- Volume: 58, Issue: 7, page 2413-2443
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- J. C. Baez, Link invariants of finite type and perturbation theory, Lett. Math. Phys. 26 (1992), 43-51 Zbl0792.57002MR1193625
- J. S. Birman, New points of view in knot theory, Bull. Amer. Math. Soc. (N.S.) 28 (1993), 253-287 Zbl0785.57001MR1191478
- P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 239-246 Zbl0572.57002MR776477
- F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. 20 (1969), 235-254 Zbl0194.03303MR248801
- B. Gemein, Singular braids and Markov’s theorem, J. Knot Theory Ramifications 6 (1997), 441-454 Zbl0885.57005
- V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 103-111 Zbl0564.57006MR766964
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388 Zbl0631.57005MR908150
- L. H. Kauffman, Invariants of graphs in three-space, Trans. Amer. Math. Soc. 311 (1989), 697-710 Zbl0672.57008MR946218
- L. H. Kauffman, P. Vogel, Link polynomials and a graphical calculus, J. Knot Theory Ramifications 1 (1992), 59-104 Zbl0795.57001MR1155094
- J. H. Przytycki, P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1988), 115-139 Zbl0655.57002MR945888