Singular Hecke algebras, Markov traces, and HOMFLY-type invariants

Luis Paris[1]; Loïc Rabenda[1]

  • [1] Université de Bourgogne Institut de Mathématiques de Bourgogne UMR 5584 du CNRS B.P. 47870 21078 Dijon cedex (France)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 7, page 2413-2443
  • ISSN: 0373-0956

Abstract

top
We define the singular Hecke algebra ( S B n ) as the quotient of the singular braid monoid algebra ( q ) [ S B n ] by the Hecke relations σ k 2 = ( q - 1 ) σ k + q , 1 k n - 1 . We define the notion of Markov trace in this context, fixing the number d of singular points, and we prove that a Markov trace determines an invariant on the links with d singular points which satisfies some skein relation. Let TR d denote the set of Markov traces with d singular points. This is a ( q , z ) -vector space. Our main result is that TR d is of dimension d + 1 . This result is completed with an explicit construction of a basis of TR d . Thanks to this result, we define a universal Markov trace and a universal HOMFLY-type invariant on singular links. This invariant is the unique invariant which satisfies some skein relation and some desingularization relation.

How to cite

top

Paris, Luis, and Rabenda, Loïc. "Singular Hecke algebras, Markov traces, and HOMFLY-type invariants." Annales de l’institut Fourier 58.7 (2008): 2413-2443. <http://eudml.org/doc/10383>.

@article{Paris2008,
abstract = {We define the singular Hecke algebra $\{\mathcal\{H\}\} (SB_n)$ as the quotient of the singular braid monoid algebra $\{\mathbb\{C\}\} (q) [SB_n]$ by the Hecke relations $\sigma _k^2 = (q-1) \sigma _k +q$, $1 \le k\le n-1$. We define the notion of Markov trace in this context, fixing the number $d$ of singular points, and we prove that a Markov trace determines an invariant on the links with $d$ singular points which satisfies some skein relation. Let $\{\rm TR\}_d$ denote the set of Markov traces with $d$ singular points. This is a $\{\mathbb\{C\}\} (q,z)$-vector space. Our main result is that $\{\rm TR\}_d$ is of dimension $d+1$. This result is completed with an explicit construction of a basis of $\{\rm TR\}_d$. Thanks to this result, we define a universal Markov trace and a universal HOMFLY-type invariant on singular links. This invariant is the unique invariant which satisfies some skein relation and some desingularization relation.},
affiliation = {Université de Bourgogne Institut de Mathématiques de Bourgogne UMR 5584 du CNRS B.P. 47870 21078 Dijon cedex (France); Université de Bourgogne Institut de Mathématiques de Bourgogne UMR 5584 du CNRS B.P. 47870 21078 Dijon cedex (France)},
author = {Paris, Luis, Rabenda, Loïc},
journal = {Annales de l’institut Fourier},
keywords = {Singular Hecke algebra; singular link; singular knot; singular braid; Markov trace; singular Hecke algebra; Markov trace, HOMFLY-type invariant.},
language = {eng},
number = {7},
pages = {2413-2443},
publisher = {Association des Annales de l’institut Fourier},
title = {Singular Hecke algebras, Markov traces, and HOMFLY-type invariants},
url = {http://eudml.org/doc/10383},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Paris, Luis
AU - Rabenda, Loïc
TI - Singular Hecke algebras, Markov traces, and HOMFLY-type invariants
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 7
SP - 2413
EP - 2443
AB - We define the singular Hecke algebra ${\mathcal{H}} (SB_n)$ as the quotient of the singular braid monoid algebra ${\mathbb{C}} (q) [SB_n]$ by the Hecke relations $\sigma _k^2 = (q-1) \sigma _k +q$, $1 \le k\le n-1$. We define the notion of Markov trace in this context, fixing the number $d$ of singular points, and we prove that a Markov trace determines an invariant on the links with $d$ singular points which satisfies some skein relation. Let ${\rm TR}_d$ denote the set of Markov traces with $d$ singular points. This is a ${\mathbb{C}} (q,z)$-vector space. Our main result is that ${\rm TR}_d$ is of dimension $d+1$. This result is completed with an explicit construction of a basis of ${\rm TR}_d$. Thanks to this result, we define a universal Markov trace and a universal HOMFLY-type invariant on singular links. This invariant is the unique invariant which satisfies some skein relation and some desingularization relation.
LA - eng
KW - Singular Hecke algebra; singular link; singular knot; singular braid; Markov trace; singular Hecke algebra; Markov trace, HOMFLY-type invariant.
UR - http://eudml.org/doc/10383
ER -

References

top
  1. J. C. Baez, Link invariants of finite type and perturbation theory, Lett. Math. Phys. 26 (1992), 43-51 Zbl0792.57002MR1193625
  2. J. S. Birman, New points of view in knot theory, Bull. Amer. Math. Soc. (N.S.) 28 (1993), 253-287 Zbl0785.57001MR1191478
  3. P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 239-246 Zbl0572.57002MR776477
  4. F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. 20 (1969), 235-254 Zbl0194.03303MR248801
  5. B. Gemein, Singular braids and Markov’s theorem, J. Knot Theory Ramifications 6 (1997), 441-454 Zbl0885.57005
  6. V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 103-111 Zbl0564.57006MR766964
  7. V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388 Zbl0631.57005MR908150
  8. L. H. Kauffman, Invariants of graphs in three-space, Trans. Amer. Math. Soc. 311 (1989), 697-710 Zbl0672.57008MR946218
  9. L. H. Kauffman, P. Vogel, Link polynomials and a graphical calculus, J. Knot Theory Ramifications 1 (1992), 59-104 Zbl0795.57001MR1155094
  10. J. H. Przytycki, P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1988), 115-139 Zbl0655.57002MR945888

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.