On the extendability of elliptic surfaces of rank two and higher
Angelo Felice Lopez[1]; Roberto Muñoz[2]; José Carlos Sierra[3]
- [1] Universitá di Roma Tre Dipartimento di Matematica Largo San Leonardo Murialdo 1 00146 Roma (Italy)
- [2] Universidad Rey Juan Carlos Departamento de Matemática Aplicada 28933 Móstoles Madrid (Spain)
- [3] Universidad Complutense de Madrid Facultad de Ciencias Matemáticas Departamento de Álgebra 28040 Madrid (Spain)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 1, page 311-346
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLopez, Angelo Felice, Muñoz, Roberto, and Sierra, José Carlos. "On the extendability of elliptic surfaces of rank two and higher." Annales de l’institut Fourier 59.1 (2009): 311-346. <http://eudml.org/doc/10394>.
@article{Lopez2009,
abstract = {We study threefolds $X \subset \mathbb\{P\}^r$ having as hyperplane section a smooth surface with an elliptic fibration. We first give a general theorem about the possible embeddings of such surfaces with Picard number two. More precise results are then proved for Weierstrass fibrations, both of rank two and higher. In particular we prove that a Weierstrass fibration of rank two that is not a K3 surface is not hyperplane section of a locally complete intersection threefold and we give some conditions, for many embeddings of Weierstrass fibrations of any rank, under which every such threefold must be a cone.},
affiliation = {Universitá di Roma Tre Dipartimento di Matematica Largo San Leonardo Murialdo 1 00146 Roma (Italy); Universidad Rey Juan Carlos Departamento de Matemática Aplicada 28933 Móstoles Madrid (Spain); Universidad Complutense de Madrid Facultad de Ciencias Matemáticas Departamento de Álgebra 28040 Madrid (Spain)},
author = {Lopez, Angelo Felice, Muñoz, Roberto, Sierra, José Carlos},
journal = {Annales de l’institut Fourier},
keywords = {Elliptic surfaces; hyperplane sections; Mori fiber spaces; elliptic surfaces; adjunction theory},
language = {eng},
number = {1},
pages = {311-346},
publisher = {Association des Annales de l’institut Fourier},
title = {On the extendability of elliptic surfaces of rank two and higher},
url = {http://eudml.org/doc/10394},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Lopez, Angelo Felice
AU - Muñoz, Roberto
AU - Sierra, José Carlos
TI - On the extendability of elliptic surfaces of rank two and higher
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 1
SP - 311
EP - 346
AB - We study threefolds $X \subset \mathbb{P}^r$ having as hyperplane section a smooth surface with an elliptic fibration. We first give a general theorem about the possible embeddings of such surfaces with Picard number two. More precise results are then proved for Weierstrass fibrations, both of rank two and higher. In particular we prove that a Weierstrass fibration of rank two that is not a K3 surface is not hyperplane section of a locally complete intersection threefold and we give some conditions, for many embeddings of Weierstrass fibrations of any rank, under which every such threefold must be a cone.
LA - eng
KW - Elliptic surfaces; hyperplane sections; Mori fiber spaces; elliptic surfaces; adjunction theory
UR - http://eudml.org/doc/10394
ER -
References
top- A. Altman, S. Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Mathematics 146 (1970), Springer-Verlag, Berlin-New York Zbl0215.37201MR274461
- E. Arbarello, E. Sernesi, Petri’s approach to the study of the ideal associated to a special divisor, Invent. Math. 49 (1978), 99-119 Zbl0399.14019MR511185
- L. Badescu, Infinitesimal deformations of negative weights and hyperplane sections, Algebraic geometry 1417 (1990), 1-22, Lecture Notes in Math. Zbl0727.14001MR1040547
- W. Barth, C. Peters, A. van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 4 (1984), Springer-Verlag, Berlin-New York Zbl0718.14023MR749574
- M. C. Beltrametti, A. J. Sommese, The adjunction theory of complex projective varieties, de Gruyter Expositions in Mathematics 16 (1995), Walter de Gruyter & Co., Berlin Zbl0845.14003MR1318687
- A. Bertram, L. Ein, R. Lazarsfeld, Surjectivity of Gaussian maps for line bundles of large degree on curves, Algebraic geometry 1479 (1991), 15-25, Springer, Berlin Zbl0752.14036MR1181203
- G. Brown, A. Corti, F. Zucconi, Birational geometry of 3-fold Mori fiber spaces, (2004), 235-275, Turin Zbl1063.14019MR2112578
- F. Catanese, M. Franciosi, Divisors of small genus on algebraic surfaces and projective embeddings, Israel Math. Conf. Proc. 9 (1996), 109-140, Bar-Ilan Univ., Ramat Gan Zbl0855.14004MR1360499
- C. Ciliberto, A. F. Lopez, R. Miranda, Projective degenerations of surfaces, Gaussian maps, and Fano threefolds, Invent. Math. 114 (1993), 641-667 Zbl0807.14028MR1244915
- C. Ciliberto, A. F. Lopez, R. Miranda, Classification of varieties with canonical curve section via Gaussian maps on canonical curves, Amer. J. Math. 120 (1998), 1-21 Zbl0934.14028MR1600256
- D. A. Cox, The Noether-Lefschetz locus of regular elliptic surfaces with section and , Amer. J. Math. 112 (1990), 289-329 Zbl0721.14017MR1047301
- H. D’Souza, Threefolds whose hyperplane sections are elliptic surfaces, Pacific J. Math. 134 (1988), 57-78 Zbl0626.14031MR953500
- R. Elkik, Rationalité des singularités canoniques, Invent. Math. 64 (1981), 1-6 Zbl0498.14002MR621766
- M. L. Fania, H. D’Souza, Varieties whose surface sections are elliptic, Tohoku Math. J. 42 (1990), 457-474 Zbl0716.14022MR1076172
- T. Fujita, On singular del Pezzo varieties, Algebraic geometry 1417 (1990), 117-128, Springer, Berlin Zbl0714.14026MR1040555
- F. Gherardelli, Un teorema di Lefschetz sulle intersezioni complete, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. 28 (1960), 610-614 Zbl0099.15802MR159827
- L. Giraldo, A. F. Lopez, R. Muñoz, On the existence of Enriques-Fano threefolds of index greater than one, J. Algebraic Geom. 13 (2004), 143-166 Zbl1059.14051MR2008718
- M. Green, Koszul cohomology and the geometry of projective varieties, J. Differ. Geom. 19 (1984), 125-171 Zbl0559.14008MR739785
- J. Harris, Algebraic geometry. A first course, 133 (1992), Springer-Verlag, New York Zbl0779.14001MR1182558
- R. Hartshorne, Algebraic geometry, 52 (1977), Springer-Verlag, New York-Heidelberg Zbl0367.14001MR463157
- P. Ionescu, Generalized adjunction and applications, Math. Proc. Cambridge Philos. Soc. 99 (1986), 457-472 Zbl0619.14004MR830359
- V. A. Iskovskih, Fano threefolds. I, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 516-562, 717 Zbl0363.14010MR463151
- V. A. Iskovskih, Fano threefolds. II, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), 506-549 Zbl0407.14016MR503430
- Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model problem, Algebraic geometry 10 (1987), 283-360, North-Holland, Amsterdam Zbl0672.14006MR946243
- S. Kleiman, Les théorèmes de finitude pour le foncteur de Picard, Lecture Notes in Mathematics 225 (1971), 616-666, Springer-Verlag, Berlin-New York Zbl0227.14007
- R. Kloosterman, Higher Noether-Lefschetz loci of elliptic surfaces, J. Differential Geom. 76 (2007), 293-316 Zbl1141.14019MR2330416
- A. L. Knutsen, Smooth curves on projective surfaces, Math. Scand. 90 (2002), 215-231 Zbl1021.14013MR1895612
- A. L. Knutsen, A. F. Lopez, Surjectivity of Gaussian maps for curves on Enriques surfaces, Adv. Geom. 7 (2007), 215-247 Zbl1124.14035MR2314819
- A. L. Knutsen, A. F. Lopez, R. Muñoz, On the extendability of projective surfaces and a genus bound for Enriques-Fano threefolds, (2006) Zbl1238.14026
- J. Kollár, S. Mori, Birational geometry of algebraic varieties, 134 (1998), Cambridge University Press, Cambridge Zbl0926.14003MR1658959
- S. J. Kovács, The cone of curves of a surface, Math. Ann. 300 (1994), 681-691 Zbl0813.14026MR1314742
- A. Lanteri, H. Maeda, Elliptic surfaces and ample vector bundles, Pacific J. Math. 200 (2001), 147-157 Zbl1053.14051MR1863410
- R. Lazarsfeld, A sampling of vector bundle techniques in the study of linear series, Lectures on Riemann surfaces (1989), 500-559, World Sci. Publishing, Teaneck, NJ Zbl0800.14003MR1082360
- R. Lazarsfeld, Positivity in Algebraic geometry. I, 48 (2004), Springer-Verlag, Berlin Zbl1093.14500MR2095471
- A. F. Lopez, Noether-Lefschetz theory and the Picard group of projective surfaces, Mem. Amer. Math. Soc. 89 (1991) Zbl0736.14012MR1043786
- S. L’vovsky, Extensions of projective varieties and deformations. I, Michigan Math. J. 39 (1992), 41-51 Zbl0770.14005MR1137887
- K. Matsuki, Introduction to the Mori program, (2002), Springer-Verlag, New York Zbl0988.14007MR1875410
- R. Miranda, The moduli of Weierstrass fibrations over , Math. Ann. 255 (1981), 379-394 Zbl0438.14023MR615858
- R. Miranda, The basic theory of elliptic surfaces, (1989), ETS Editrice, Pisa Zbl0744.14026MR1078016
- B. G. Moishezon, Algebraic homology classes on algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 225-268 Zbl0162.52503MR213351
- S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982), 133-176 Zbl0557.14021MR662120
- S. Mori, S. Mukai, Classification of Fano -folds with , Manuscripta Math. 36 (1981/82), 147-162 Zbl0478.14033MR641971
- M. Nagata, On rational surfaces. I. Irreducible curves of arithmetic genus or , Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 32 (1960), 351-370 Zbl0100.16703MR126443
- Y. Namikawa, Smoothing Fano 3-folds, J. Algebraic Geom. 6 (1997), 307-324 Zbl0906.14019MR1489117
- R. Paoletti, Free pencils on divisors, Math. Ann. 303 (1995), 109-123 Zbl0835.14005MR1348358
- Yu. G. Prokhorov, The degree of Fano threefolds with canonical Gorenstein singularities, Mat. Sb. 196 (2005), 81-122 Zbl1081.14058MR2141325
- V. V. Shokurov, The existence of a line on Fano varieties, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 922-964, 968 Zbl0422.14019MR548510
- V. V. Shokurov, Smoothness of a general anticanonical divisor on a Fano variety, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 430-441 Zbl0407.14017MR534602
- J. Wahl, Introduction to Gaussian maps on an algebraic curve, Complex Projective Geometry. Trieste-Bergen 1989, Lond. Math. Soc. Lect. Note Ser. 179, Cambridge Univ. Press, Cambridge 1992, 304-323 Zbl0790.14014
- F. L. Zak, Some properties of dual varieties and their applications in projective geometry, Algebraic geometry 1479 (1991), 273-280, Springer, Berlin Zbl0793.14026MR1181218
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.