Minimal injective resolutions with applications to dualizing modules and Gorenstein modules

Robert Fossum; Hans-Bjorn Foxby; Phillip Griffith; Idun Reiten

Publications Mathématiques de l'IHÉS (1975)

  • Volume: 45, page 193-215
  • ISSN: 0073-8301

How to cite

top

Fossum, Robert, et al. "Minimal injective resolutions with applications to dualizing modules and Gorenstein modules." Publications Mathématiques de l'IHÉS 45 (1975): 193-215. <http://eudml.org/doc/103940>.

@article{Fossum1975,
author = {Fossum, Robert, Foxby, Hans-Bjorn, Griffith, Phillip, Reiten, Idun},
journal = {Publications Mathématiques de l'IHÉS},
language = {eng},
pages = {193-215},
publisher = {Institut des Hautes Études Scientifiques},
title = {Minimal injective resolutions with applications to dualizing modules and Gorenstein modules},
url = {http://eudml.org/doc/103940},
volume = {45},
year = {1975},
}

TY - JOUR
AU - Fossum, Robert
AU - Foxby, Hans-Bjorn
AU - Griffith, Phillip
AU - Reiten, Idun
TI - Minimal injective resolutions with applications to dualizing modules and Gorenstein modules
JO - Publications Mathématiques de l'IHÉS
PY - 1975
PB - Institut des Hautes Études Scientifiques
VL - 45
SP - 193
EP - 215
LA - eng
UR - http://eudml.org/doc/103940
ER -

References

top
  1. [1] M. AUSLANDER and M. BRIDGER, Stable module theory, Memoirs Amer. Math. Soc., no. 94 (1969). Zbl0204.36402MR42 #4580
  2. [2] M. AUSLANDER and D. BUCHSBAUM, Homological dimension in local rings, II, Trans. Amer. Math. Soc., 85 (1957), 390-405. Zbl0078.02802MR19,249d
  3. [3] M. AUSLANDER and O. GOLDMAN, The Brauer group of a commutative ring, Trans. Amer. Math. Soc., 97 (1960), 367-409. Zbl0100.26304MR22 #12130
  4. [4] G. AZUMAYA, On maximally central algebras, Nagoya Math. J., 2 (1951), 119-150. Zbl0045.01103MR12,669g
  5. [5] H. BASS, On the ubiquity of Gorenstein rings, Math. Z., 82 (1963), 8-28. Zbl0112.26604MR27 #3669
  6. [6] M.-J. BERTIN, Anneaux d'invariants d'anneaux de polynômes, en caractéristique p, C. R. Acad. Sci. Paris, 264 (1967), 653-656. Zbl0147.29503MR35 #6661
  7. [7] H. CARTAN and S. EILENBERG, Homological Algebra, Princeton University Press, 1956. Zbl0075.24305MR17,1040e
  8. [8] I. S. COHEN, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc., 59 (1946), 54-106. Zbl0060.07001MR7,509h
  9. [9] J. A. EAGON and D. G. NORTHCOTT, Ideals defined by matrices and a certain complex associated with them, Proc. Royal Soc. A, 269 (1962), 188-204. Zbl0106.25603MR26 #161
  10. [10] J. A. EAGON, Examples of Cohen-Macaulay rings which are not Gorenstein, Math. Z., 109 (1969), 109-111. Zbl0184.29201MR39 #5552
  11. [11] D. FERRAND and M. RAYNAUD, Fibres formelles d'un anneau local noethérien, Ann. Sci. Éc. Norm. Sup. (4), 3 (1970), 295-311. Zbl0204.36601MR42 #7660
  12. [12] R. FOSSUM and P. GRIFFITH, A complete local factorial ring of dimension 4 which is not Cohen-Macaulay, Bull. Amer. Math. Soc., 81 (1975), 111-113. Zbl0301.13006MR50 #9858
  13. [13] R. FOSSUM, P. GRIFFITH and I. REITEN, Trivial Extensions of Abelian Categories, Lecture Notes in Mathematics, No. 456, Berlin-Heidelberg-New York, Springer-Verlag, 1975. Zbl0303.18006MR52 #10810
  14. [14] H.-B. FOXBY, On the ui in a minimal injective resolution, Math. Scand., 29 (1971), 175-186. Zbl0235.13006MR46 #9023
  15. [15] H.-B. FOXBY, Gorenstein modules and related modules, Math. Scand., 31 (1972), 367-384. Zbl0272.13009MR48 #6094
  16. [16] H.-B. FOXBY, n-Gorenstein rings, Proc. Amer. Math. Soc., 42 (1974), 67-72. Zbl0294.13015MR48 #2140
  17. [17] P. GABRIEL, Des catégories abéliennes, Bull. Soc. Math. France, 90 (1963), 323-448. Zbl0201.35602MR38 #1144
  18. [18] A. GROTHENDIECK, Théorèmes de dualité pour les faisceaux algébriques cohérents, Séminaire Bourbaki, Exp. 149, Mai 1957. 
  19. [19] A. GROTHENDIECK, Local Cohomology, Lecture Notes in Mathematics, No. 41, Berlin-Heidelberg-New York, Springer 1967. Zbl0185.49202MR37 #219
  20. [20] A. GROTHENDIECK, Le groupe de Brauer, I, Dix Exposés sur la cohomologie des schémas, Amsterdam, North-Holland Pub. Co. (1969), 46-65. Zbl0193.21503
  21. [21] T. GULLIKSEN, Massey operations and the Poincaré series of certain local rings, J. Algebra, 22 (1972), 223-232. Zbl0243.13015MR46 #5317
  22. [22] R. HARTSHORNE, Residues and duality, Lecture Notes in Mathematics, No. 20, Berlin-Heidelberg-New York, Springer, 1966. Zbl0212.26101MR36 #5145
  23. [23] R. HARTSHORNE and A. OGUS, On the factoriality of local rings of small embedding codimension, Communications in Algebra, 1 (1974), 415-437. Zbl0286.13013MR50 #322
  24. [24] J. HERZOG and E. KUNZ, Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Mathematics, No. 238, Berlin-Heidelberg-New York, Springer, 1971. Zbl0231.13009MR54 #304
  25. [25] M. HOCHSTER, Deep local rings, Preprint Series No. 8 (1973/1974), Aarhus, Denmark, Aarhus Universitets Mathematiske Institut. 
  26. [26] BIRGER IVERSEN, Generic Local Structure in Commutative Algebra, Lecture Notes in Mathematics, No. 310, Berlin-Heidelberg-New York, Springer, 1973. Zbl0247.13001MR50 #13023
  27. [27] I. KAPLANSKY, Commutative Rings, Boston, Allyn and Bacon, Inc., 1970. Zbl0203.34601MR40 #7234
  28. [28] M.-A. KNUS and M. OJANGUREN, Sur quelques applications de la théorie de la descente à l'étude du groupe de Brauer, Comm. Math. Helv., 47 (1972), 532-542. Zbl0248.13002MR50 #2146
  29. [29] E. MATLIS, Injective modules over noetherian rings, Pacific J. Math., 8 (1958), 511-528. Zbl0084.26601MR20 #5800
  30. [30] H. MATSUMURA, Commutative Algebra, New York, W. A. Benjamin, Inc., 1970. Zbl0211.06501MR42 #1813
  31. [31] M. P. MURTHY, A note on factorial rings, Arch. Math., 15 (1964), 418-420. Zbl0123.03401MR30 #3905
  32. [32] D. G. NORTHCOTT, Some remarks on the theory of ideals defined by matrices, Quart. J. Math. Oxford (2), 14 (1963), 193-204. Zbl0116.02504MR27 #1467
  33. [33] C. PESKINE and L. SZPIRO, Dimension projective finie et cohomologie locale, Publ. Math. I.H.E.S., 42 (1973), 49-119. Zbl0268.13008
  34. [34] I. REITEN, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc., 32 (1972), 417-420. Zbl0235.13016MR45 #5128
  35. [35] I. REITEN and R. FOSSUM, Commutative n-Gorenstein rings, Math. Scand., 31 (1972), 33-48. Zbl0256.13016MR51 #12839
  36. [36] J.-E. ROOS, Sur les dérivés de lim A T T . Applications, C. R. Acad. Sci. Paris, 252 (1961), 3702-3704. Zbl0102.02501MR24 #A1938
  37. [37] R. Y. SHARP, Gorenstein modules, Math. Z., 115 (1970), 117-139. Zbl0186.07403MR41 #8401
  38. [38] R. Y. SHARP, Finitely generated modules of finite injective dimension over certain Cohen-Macaulay rings, Proc. London Math. Soc., 25 (1972), 303-328. Zbl0244.13015MR46 #5315
  39. [39] R. Y. SHARP, On Gorenstein modules over a complete Cohen-Macaulay local ring, Quart. J. Math. (Oxford) (2), 22 (1971), 425-434. Zbl0221.13016MR44 #6693
  40. [40] R. Y. SHARP, The Cousin complex for a module over a commutative Noetherian ring, Math. Z., 112 (1969), 340-356. Zbl0182.06103MR41 #8400
  41. [41] R. Y. SHARP, The Euler characteristic of a finitely generated module of finite injective dimension, Math. Z., 130 (1973), 79-93. Zbl0237.13009MR47 #8518

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.