The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Minimal injective resolutions with applications to dualizing modules and Gorenstein modules”

On Cohen-Macaulay rings

Edgar E. Enochs, Jenda M. G. Overtoun (1994)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we use a characterization of R -modules N such that f d R N = p d R N to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting N to be the d t h local cohomology functor of R with respect to the maximal ideal where d is the Krull dimension of R .

On the structure of the canonical model of the Rees algebra and the associated graded ring of an ideal.

Santiago Zarzuela (1992)

Publicacions Matemàtiques

Similarity:

In this note we give a description of a morphism related to the structure of the canonical model of the Rees algebra R(I) of an ideal I in a local ring. As an application we obtain Ikeda's criteria for the Gorensteinness of R(I) and a result of Herzog-Simis-Vasconcelos characterizing when the canonical module of R(I) has the expected form.

Cohen-Macaulayness of multiplication rings and modules

R. Naghipour, H. Zakeri, N. Zamani (2003)

Colloquium Mathematicae

Similarity:

Let R be a commutative multiplication ring and let N be a non-zero finitely generated multiplication R-module. We characterize certain prime submodules of N. Also, we show that N is Cohen-Macaulay whenever R is Noetherian.

On co-Gorenstein modules, minimal flat resolutions and dual Bass numbers

Zahra Heidarian, Hossein Zakeri (2015)

Colloquium Mathematicae

Similarity:

The dual of a Gorenstein module is called a co-Gorenstein module, defined by Lingguang Li. In this paper, we prove that if R is a local U-ring and M is an Artinian R-module, then M is a co-Gorenstein R-module if and only if the complex H o m R ̂ ( ( , R ̂ ) , M ) is a minimal flat resolution for M when we choose a suitable triangular subset on R̂. Moreover we characterize the co-Gorenstein modules over a local U-ring and Cohen-Macaulay local U-ring.