Extensions du groupe additif

Lawrence Breen

Publications Mathématiques de l'IHÉS (1978)

  • Volume: 48, page 39-125
  • ISSN: 0073-8301

How to cite

top

Breen, Lawrence. "Extensions du groupe additif." Publications Mathématiques de l'IHÉS 48 (1978): 39-125. <http://eudml.org/doc/103955>.

@article{Breen1978,
author = {Breen, Lawrence},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Additive Group Scheme; Ext; Eilenberg-Maclane Spectrum},
language = {fre},
pages = {39-125},
publisher = {Institut des Hautes Études Scientifiques},
title = {Extensions du groupe additif},
url = {http://eudml.org/doc/103955},
volume = {48},
year = {1978},
}

TY - JOUR
AU - Breen, Lawrence
TI - Extensions du groupe additif
JO - Publications Mathématiques de l'IHÉS
PY - 1978
PB - Institut des Hautes Études Scientifiques
VL - 48
SP - 39
EP - 125
LA - fre
KW - Additive Group Scheme; Ext; Eilenberg-Maclane Spectrum
UR - http://eudml.org/doc/103955
ER -

References

top
  1. [1] J. F. ADAMS, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, Chicago-London, The University of Chicago Press (1974). Zbl0309.55016MR53 #6534
  2. [2] D. W. ANDERSON, Simplicial K-theory and generalised homology theories I, II, à paraître. 
  3. [3] M. ARTIN, A. GROTHENDIECK et J.-L. VERDIER, Théorie des topos et cohomologie étale des schémas (SGA 4), Lecture Notes in Mathematics, 269, 270, 305, Berlin-Heidelberg-New York, Springer (1972-1973). 
  4. [4] J. BOARDMAN, Stable homotopy theory. Notes multigraphiées de l'Université de Warwick (à partir de 1965). 
  5. [5] J. BOARDMAN et R. VOGT, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, 347, Berlin-Heidelberg-New York, Springer (1973). Zbl0285.55012MR54 #8623a
  6. [6] A. K. BOUSFIELD, Homogeneous functors and their derived functors, notes multigraphiées, M.I.T. 
  7. [7] A. K. BOUSFIELD, Operations on derived functors of non-additive functors, notes multigraphiées, M.I.T. 
  8. [8] G. BREDON, Sheaf theory, New York, McGraw-Hill (1967). Zbl0158.20505MR36 #4552
  9. [9] L. BREEN, Extensions of abelian sheaves and Eilenberg-Mac Lane algebras, Invent. Math., 9 (1969), 15-44. Zbl0177.51304MR41 #3488
  10. [10] L. BREEN, On a non trivial higher extension of representable abelian sheaves, Bull. Amer. Math. Soc., 75 (1969), 1249-1253. Zbl0184.46602MR41 #211
  11. [11] L. BREEN, Un théorème d'annulation pour certains des Exti de faisceaux abéliens, Ann. Scient. Ec. Norm. Sup., 8 (1975), 339-352. Zbl0313.14001MR53 #5595
  12. [12] K. S. BROWN, Abstract homotopy theory and generalised sheaf cohomology, Trans. Amer. Math. Soc., 186 (1974), 419-458. Zbl0245.55007MR49 #6220
  13. [13] H. CARTAN, Algèbres d'Eilenberg-Mac Lane et homotopie (Séminaire Cartan 1954-1955), New York-Amsterdam, W. A. Benjamin (1967). Zbl0067.15601
  14. [14] A. CLARK, Homotopy commutativity and the Moore spectral sequence, Pacific J. Math., 15 (1965), 65-74. Zbl0129.38805MR31 #1679
  15. [15] J. M. COHEN, Stable homotopy, Lecture Notes in Mathematics, 165, Berlin-Heidelberg-New York, Springer (1970). Zbl0201.55703MR42 #8486
  16. [16] J. M. COHEN, The Hurewicz homomorphism on MU, Invent. Math., 10 (1970), 177-186. Zbl0201.55704MR42 #1130
  17. [17] P. DELIGNE, Théorie de Hodge III, Publ. Math. I.H.E.S., 44 (1974), 5-77. Zbl0237.14003MR58 #16653b
  18. [18] M. DEMAZURE et P. GABRIEL, Groupes algébriques (t. I), Amsterdam, North-Holland Publishing Co. (1970). Zbl0203.23401
  19. [19] M. DEMAZURE et A. GROTHENDIECK, Schémas en groupes (SGA 3) I, Lecture Notes in Mathematics, 151, Berlin-Heidelberg-New York, Springer (1970). Zbl0207.51401MR43 #223a
  20. [20] A. DOLD, Über die Steenrodschen Kohomologieoperationen, Ann. of Math., 73 (1961), 258-294. Zbl0099.17802MR23 #A646
  21. [21] A. DOLD et D. PUPPE, Homologie nicht-additiver Functoren, Anwendungen, Ann. Inst. Fourier, 11 (1961), 201-312. Zbl0098.36005MR27 #186
  22. [22] E. DYER et R. LASHOF, Homology of iterated loop spaces, Am. J. Math., 84 (1962), 35-88. Zbl0119.18206MR25 #4523
  23. [23] G. EFROYMSON, A study of H3sym(A, M), J. of Algebra, 14 (1970), 24-34. Zbl0187.28903MR40 #2667
  24. [24] S. EILENBERG et S. MAC LANE, Homology theory for multiplicative systems, Trans. Amer. Math. Soc., 71 (1951), 294-330. Zbl0043.25403MR13,314c
  25. [25] S. EILENBERG et S. MAC LANE, On the groups H(II, n) I, II, Ann. of Math., 58, 55-106 et 60 (1954), 49-139. Zbl0050.39304MR15,54b
  26. [26] S. EILENBERG et S. MAC LANE, On the homology theory of abelian groups, Canadian J. Math., 7 (1955), 43-53. Zbl0064.02701MR16,564g
  27. [27] D. B. A. EPSTEIN, Steenrod operations in homological algebra, Invent. Math., 1 (1966), 152-208. Zbl0139.01502MR33 #7389
  28. [28] P. GABRIEL et M. ZISMAN, Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihre Grenzgebiete, New Series, Vol. 35, Berlin-Heidelberg-New York, Springer (1967). Zbl0186.56802MR35 #1019
  29. [29] R. GODEMENT, Théorie des faisceaux. Actualités scientifiques et industrielles, 1252, Paris, Hermann (1964). 
  30. [30] A. GROTHENDIECK et J. DIEUDONNÉ, Éléments de géométrie algébrique (EGA III), Étude cohomologique des faisceaux cohérents (première partie), Publ. Math. I.H.E.S., 11 (1961). Zbl0118.36206
  31. [31] A. GROTHENDIECK, Groupes de monodromie en géométrie algébrique (SGA 7) I, Lecture Notes in Mathematics, 288, Berlin-Heidelberg-New York, Springer (1972). Zbl0237.00013MR50 #7134
  32. [32] H. HASTINGS, A smash product for spectra, Bull. Amer. Math. Soc., 79 (1973), 946-951. Zbl0273.55016MR49 #8001
  33. [33] R. HEATON, Polynomial 3-cocycles over fields of characteristic p, Duke Math. J., 26 (1959), 269-275. Zbl0084.26803MR25 #3075
  34. [34] L. ILLUSIE, Complexe cotangent et déformations I, II, Lecture Notes in Mathematics, 239, 283, Berlin-Heidelberg-New York, Springer (1972). Zbl0238.13017
  35. [35] D. KAN, Semisimplicial spectra, Illinois J. Math., 7 (1963), 463-478. Zbl0115.40401MR27 #2986
  36. [36] D. KAN et G. W. WHITEHEAD, The reduced join of two spectra, Topology, 3, supplement 2 (1965), 239-261. Zbl0142.40501MR31 #2720
  37. [37] S. KOCHMAN, Symmetric Massey products and a Hirsch formula in homology, Trans. Amer. Math. Soc., 163 (1972), 245-260. Zbl0208.25502MR48 #9721
  38. [38] D. KRAINES, The A(p) cohomology of some k-stage Postnikov systems, Comment. Math. Helv., 48 (1973), 56-71. Zbl0263.55017MR48 #1233
  39. [39] K. LAMOTKE, Semisimpliziale algebraische Topologie. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 147, Berlin-Heidelberg-New York, Springer (1968). Zbl0188.28301MR39 #6318
  40. [40] M. LAZARD, Lois de groupe et analyseurs, Ann. Scient. Éc. Norm. Sup., 72 (1955), 299-400. Zbl0068.02702MR17,1053c
  41. [41] J. LUBIN et J. TATE, Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France, 94 (1966), 49-59. Zbl0156.04105MR39 #214
  42. [42] S. MAC LANE, The homology products in K(II, n), Proc. Amer. Math. Soc., 5 (1954), 642-651. Zbl0059.16405MR16,160d
  43. [43] S. MAC LANE, Homologie des anneaux et des modules, C.B.R.M. Louvain (1956), 55-80. Zbl0084.26703MR20 #892
  44. [44] S. MAC LANE, Homology. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 114, Berlin-Heidelberg-New York, Springer (1963). Zbl0328.18009MR28 #122
  45. [45] J. P. MAY, The cohomology of augmented algebras and generalised Massey products for DGA algebras, Trans. Amer. Math. Soc., 122 (1966), 334-340. Zbl0138.01802MR33 #721
  46. [46] J. P. MAY, A general algebraic approach to Steenrod operations. Paru dans : The Steenrod Algebra and its applications, Lecture Notes in Mathematics, 168, Berlin-Heidelberg-New York, Springer (1970). Zbl0242.55023MR43 #6915
  47. [47] R. MILGRAM, Steenrod squares and higher Massey products, Bol. Soc. Math. Mexicana, 13 (1968), 32-57. Zbl0204.23403MR41 #7679
  48. [48] J. MILNE, Duality in the flat cohomology of a surface, Ann. Scient. Éc. Norm. Sup., 9 (1976), 171-202. Zbl0334.14010MR57 #325
  49. [49] J. MILNOR, The Steenrod algebra and its dual, Ann. of Math., 67 (1958), 150-171. Zbl0080.38003MR20 #6092
  50. [50] G. NISHIDA, Cohomology operations in iterated loop spaces, Proc. Japan Acad., 44 (1968), 104-109. Zbl0165.26202MR39 #2156
  51. [51] F. OORT, Commutative group schemes, Lecture Notes in Mathematics, 15, Berlin-Heidelberg-New York, Springer (1966). Zbl0216.05603MR35 #4229
  52. [52] S. PRIDDY, Mod p right derived functor algebras of the symmetric algebra functor, J. Pure and Applied Algebra, 3 (1973), 337-356. Zbl0284.55026MR49 #7338
  53. [53] D. QUILLEN, Homotopical algebra, Lecture Notes in Mathematics, 43, Berlin-Heidelberg-New York, Springer (1967). Zbl0168.20903MR36 #6480
  54. [54] D. QUILLEN, On the homology theory of commutative rings, notes multigraphiées, M.I.T. Zbl0234.18010
  55. [55] D. QUILLEN, On the (co-)homology of commutative rings. Paru dans : Applications of Categorical algebra (Proc. Symp. Pure Math. XVII), 65-87 ; Providence, Amer. Math. Soc. (1970). Zbl0234.18010MR41 #1722
  56. [56] M. RAYNAUD, Modules projectifs universels, Invent. Math., 6 (1968), 1-26. Zbl0216.32601MR38 #4462
  57. [57] N. ROBY, Lois polynômes et lois formelles en théorie des modules, Ann. Scient. Éc. Norm. Sup., 80 (1963), 213-348. Zbl0117.02302MR28 #5091
  58. [58] M. ROTHENBERG et N. STEENROD, The cohomology of classifying spaces of H-spaces, Bull. Amer. Math. Soc., 71 (1965), 872-875. Zbl0132.19201MR34 #8405
  59. [59] G. SEGAL, Classifying spaces and spectral sequences, Publ. Math. I.H.E.S., 34 (1968), 105-112. Zbl0199.26404MR38 #718
  60. [60] G. SEGAL, The multiplicative group of classical cohomology, Quarterly J. Math., 26 (1975), 289-293. Zbl0321.55017MR52 #1667
  61. [61] J.-P. SERRE, Cohomologie modulo 2 des complexes d'Eilenberg-Mac Lane, Comment. Math. Helv., 27 (1953), 198-232. Zbl0052.19501MR15,643c
  62. [62] J.-P. SERRE, Groupes algébriques et corps de classes, Actualités scientifiques et industrielles, 1264, Paris, Hermann (1959). Zbl0097.35604
  63. [63] Hong Xuan SINH, Gr-catégories, thèse, Université Paris VII (1975). 
  64. [64] J. STASHEFF, Homotopy associativity of H-spaces II, Trans. Amer. Math. Soc., 108 (1963), 293-312. Zbl0114.39402MR28 #1623
  65. [65] N. STEENROD et D. B. A. EPSTEIN, Cohomology operations, Annals of Mathematics Studies, 50, Princeton, Princeton University Press (1962). Zbl0102.38104MR26 #3056
  66. [66] M. TIERNEY, Categorical constructions in stable homotopy, Lecture Notes in Mathematics, 87, Berlin-Heidelberg-New York, Springer (1969). Zbl0167.21305MR39 #7598
  67. [67] R. VOGT, Boardman's stable homotopy category, Aarhus Universitet Lecture Notes, 21, notes multigraphiées (1971). Zbl0224.55014MR43 #1187
  68. [68] G. W. WHITEHEAD, Generalized homology theories, Trans. Amer. Math. Soc., 102 (1962), 227-283. Zbl0124.38302MR25 #573

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.