Duality in the flat cohomology of a surface

J. S. Milne

Annales scientifiques de l'École Normale Supérieure (1976)

  • Volume: 9, Issue: 2, page 171-201
  • ISSN: 0012-9593

How to cite


Milne, J. S.. "Duality in the flat cohomology of a surface." Annales scientifiques de l'École Normale Supérieure 9.2 (1976): 171-201. <http://eudml.org/doc/81978>.

author = {Milne, J. S.},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {2},
pages = {171-201},
publisher = {Elsevier},
title = {Duality in the flat cohomology of a surface},
url = {http://eudml.org/doc/81978},
volume = {9},
year = {1976},

AU - Milne, J. S.
TI - Duality in the flat cohomology of a surface
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1976
PB - Elsevier
VL - 9
IS - 2
SP - 171
EP - 201
LA - eng
UR - http://eudml.org/doc/81978
ER -


  1. [1] M. ARTIN, Autoduality of the Jacobian, Bowdoin College, 1967 (Mimeographed notes). 
  2. [2] M. ARTIN, Supersingular K3 Surfaces (Ann. scient. Éc. norm. Sup., 4e série, Vol. 7, 1974, p. 543-568). Zbl0322.14014MR51 #8116
  3. [3] S. BLOCH, K2 and Algebraic Cycles (Ann. of Math., Vol. 99, 1974, p. 349-379). Zbl0298.14005MR49 #7260
  4. [4] S. BLOCH, Algebraic K-Theory and Crystalline Cohomology, Pub. Math. I.H.E.S. (to appear). Zbl0388.14010
  5. [5] L. BREEN, Extensions of the Additive Vector Space (Preprint). 
  6. [6] L. BREEN, Personal communication. 
  7. [7] J. GAMST and K. HOECHSMANN, Products in Sheaf-Cohomology (Tôhoku Math. J., Vol. 22, 1970, p. 143-162). Zbl0262.18010MR44 #6793
  8. [8] A. GROTHENDIECK, Théorèmes de dualité pour les faisceaux algébriques cohérents (Séminaire Bourbaki, n° 149, 1956-1957). Zbl0227.14014
  9. [9] A. GROTHENDIECK, Le groupe de Brauer III, Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968. Zbl0198.25901MR39 #5586b
  10. [10] A. GROTHENDIECK, M. ARTIN et J. VERDIER, Séminaire de Géométrie algébrique 4 (Lecture Notes in Math., Nos. 269, 270, 305, Springer, Berlin, 1972-1973). 
  11. [11] R. HARTSHORNE, Residues and Duality (Lecture Notes in Math., No. 20, Springer, Berlin, 1966). Zbl0212.26101MR36 #5145
  12. [12] N. KATZ, Nilpotent Connections and the Monodromy Theorem: Applications of a Result of Turritin (Pub. Math. I.H.E.S., Vol. 39, 1971, p. 175-232). Zbl0221.14007
  13. [13] J. MILNE, On a Conjecture of Artin and Tate (Ann. of Math., Vol. 102, 1975, p. 517-533). Zbl0343.14005MR54 #2659
  14. [14] D. MUMFORD, Abelian Varieties, Oxford, London, 1970. Zbl0223.14022MR44 #219
  15. [15] J.-P. SERRE, Groupes proalgébriques (Pub. Math. I.H.E.S., Vol. 7, 1960, p. 1-67). Zbl0097.35901MR22 #9493

Citations in EuDML Documents

  1. J. S. Milne, Zero cycles on algebraic varieties in nonzero characteristic : Rojtman's theorem
  2. Niels O. Nygaard, Higher de Rham-Witt complexes of supersingular K3 surfaces
  3. Kazuya Kato, Duality theories for p -primary etale cohomology II
  4. L. Begueri, Dualité sur un corps local à corps résiduel algébriquement clos
  5. Jean-Yves Etesse, Complexe de De Rham-Witt à coefficients dans un cristal
  6. Jean-Pierre Serre, Cohomologie galoisienne : progrès et problèmes
  7. Jean-Yves Etesse, Dualité plate pour les surfaces à coefficients dans un groupe de type multiplicatif
  8. M. Artin, B. Mazur, Formal groups arising from algebraic varieties
  9. Nicholas M. Katz, Internal reconstruction of unit-root F -crystals via expansion-coefficients. With an appendix by Luc Illusie
  10. Michel Gros, Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.