Page 1 Next

Displaying 1 – 20 of 28

Showing per page

Extension theory of infinite symmetric products

Jerzy Dydak (2004)

Fundamenta Mathematicae

We present an approach to cohomological dimension theory based on infinite symmetric products and on the general theory of dimension called the extension dimension. The notion of the extension dimension ext-dim(X) was introduced by A. N. Dranishnikov [9] in the context of compact spaces and CW complexes. This paper investigates extension types of infinite symmetric products SP(L). One of the main ideas of the paper is to treat ext-dim(X) ≤ SP(L) as the fundamental concept of cohomological dimension...

K ( π , 1 ) conjecture for Artin groups

Luis Paris (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

The purpose of this paper is to put together a large amount of results on the K ( π , 1 ) conjecture for Artin groups, and to make them accessible to non-experts. Firstly, this is a survey, containing basic definitions, the main results, examples and an historical overview of the subject. But, it is also a reference text on the topic that contains proofs of a large part of the results on this question. Some proofs as well as few results are new. Furthermore, the text, being addressed to non-experts, is as...

Noetherian loop spaces

Natàlia Castellana, Juan Crespo, Jérôme Scherer (2011)

Journal of the European Mathematical Society

The class of loop spaces of which the mod p cohomology is Noetherian is much larger than the class of p -compact groups (for which the mod p cohomology is required to be finite). It contains Eilenberg–Mac Lane spaces such as P and 3-connected covers of compact Lie groups. We study the cohomology of the classifying space B X of such an object and prove it is as small as expected, that is, comparable to that of B P . We also show that B X differs basically from the classifying space of a p -compact group...

Salvetti complex, spectral sequences and cohomology of Artin groups

Filippo Callegaro (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

The aim of this short survey is to give a quick introduction to the Salvetti complex as a tool for the study of the cohomology of Artin groups. In particular we show how a spectral sequence induced by a filtration on the complex provides a very natural and useful method to study recursively the cohomology of Artin groups, simplifying many computations. In the last section some examples of applications are presented.

Currently displaying 1 – 20 of 28

Page 1 Next