Entropy linearity and chain-recurrence

David Fried; Michael Shub

Publications Mathématiques de l'IHÉS (1979)

  • Volume: 50, page 203-214
  • ISSN: 0073-8301

How to cite

top

Fried, David, and Shub, Michael. "Entropy linearity and chain-recurrence." Publications Mathématiques de l'IHÉS 50 (1979): 203-214. <http://eudml.org/doc/103963>.

@article{Fried1979,
author = {Fried, David, Shub, Michael},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {entropy conjecture; affine manifold; chain-recurrence set; topological entropy; diffeomorphism; axiom A diffeomorphism with no cycles},
language = {eng},
pages = {203-214},
publisher = {Institut des Hautes Études Scientifiques},
title = {Entropy linearity and chain-recurrence},
url = {http://eudml.org/doc/103963},
volume = {50},
year = {1979},
}

TY - JOUR
AU - Fried, David
AU - Shub, Michael
TI - Entropy linearity and chain-recurrence
JO - Publications Mathématiques de l'IHÉS
PY - 1979
PB - Institut des Hautes Études Scientifiques
VL - 50
SP - 203
EP - 214
LA - eng
KW - entropy conjecture; affine manifold; chain-recurrence set; topological entropy; diffeomorphism; axiom A diffeomorphism with no cycles
UR - http://eudml.org/doc/103963
ER -

References

top
  1. [1] Rufus BOWEN, Equilibrium States and the Ergodic Theory of Axiom A Diffeomorphisms, Lecture Notes in Math., n° 470, Springer, 1975. Zbl0308.28010
  2. [2] Rufus BOWEN, Entropy for Group Endomorphisms and Homogeneous Spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414. Zbl0212.29201MR43 #469
  3. [3] Rufus BOWEN, Entropy vs. Homology for Certain Diffeomorphisms, Topology, 13 (1974), 61. Zbl0282.58010
  4. [4] Rufus BOWEN and D. RUELLE, The Ergodic Theory of Axiom A Flows, Inv. Math., 29 (1975), 181-202. Zbl0311.58010MR52 #1786
  5. [5] D. FRIED, W. GOLDMAN and M. HIRSCH, Affinely Flat Manifolds with Nilpotent Holonomy, to appear. Zbl0516.57014
  6. [6] Benjamin HALPERN, Morse-Smale Diffeomorphisms on Tori. To appear in Topology. Zbl0422.58020
  7. [7] HIRSCH, PUGH, SHUB, Invariant Manifolds, Lecture Notes in Math., n° 583, Springer, 1977. Zbl0355.58009MR58 #18595
  8. [8] John MILNOR, On Fundamental Groups of Complete Affinely Flat Manifolds, Adv. Math., 25 (1977), 178-187. Zbl0364.55001MR56 #13130
  9. [9] Morris NEWMAN, Integral Matrices, Academic Press, 1972. Zbl0254.15009
  10. [10] J. PALIS, On Morse-Smale Dynamical Systems, Topology, 8 (1969), p. 385. Zbl0189.23902MR39 #7620
  11. [11] William PARRY, Ergodic Properties of Affine Transformations and Flows on Nilmanifolds, Amer. J. of Math., 91 (1969), 757-771. Zbl0183.51503MR41 #5595
  12. [12] C. PUGH et al., On the Entropy Conjecture, Dynamical Systems-Warwick, 1974; Lecture Notes in Math., n° 468, Springer, 1975. Zbl0307.58017
  13. [13] R. SACKSTEDER and M. SHUB, Entropy of a Differentiable Map, Adv. Math., 28 (1978), 181-185. Zbl0414.58027MR80c:58021
  14. [14] M. SHUB, Stabilité globale des systèmes dynamiques, Astérisque, 56, 1978. Zbl0396.58014MR80c:58015
  15. [15] M. SHUB and D. SULLIVAN, Homology Theory and Dynamical Systems, Topology, 14 (1975), 109-132. Zbl0408.58023MR53 #4141
  16. [16] M. SHUB and R. F. WILLIAMS, Entropy and Stability, Topology, 14 (1975), 329-338. Zbl0329.58010MR54 #3760
  17. [17] D. B. RAY and I. M. SINGER, R-Torsion and the Laplacian on Riemannian Manifolds, Adv. Math., 7 (1971). Zbl0239.58014MR45 #4447

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.