An analytic proof of Novikov's theorem on rational Pontrjagin classes

Dennis Sullivan; Nicolae Teleman

Publications Mathématiques de l'IHÉS (1983)

  • Volume: 58, page 79-81
  • ISSN: 0073-8301

How to cite

top

Sullivan, Dennis, and Teleman, Nicolae. "An analytic proof of Novikov's theorem on rational Pontrjagin classes." Publications Mathématiques de l'IHÉS 58 (1983): 79-81. <http://eudml.org/doc/103995>.

@article{Sullivan1983,
author = {Sullivan, Dennis, Teleman, Nicolae},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Lipschitz invariant; signature operator; topological 4-manifold; ZFM 531.58044; Lipschitz structure},
language = {eng},
pages = {79-81},
publisher = {Institut des Hautes Études Scientifiques},
title = {An analytic proof of Novikov's theorem on rational Pontrjagin classes},
url = {http://eudml.org/doc/103995},
volume = {58},
year = {1983},
}

TY - JOUR
AU - Sullivan, Dennis
AU - Teleman, Nicolae
TI - An analytic proof of Novikov's theorem on rational Pontrjagin classes
JO - Publications Mathématiques de l'IHÉS
PY - 1983
PB - Institut des Hautes Études Scientifiques
VL - 58
SP - 79
EP - 81
LA - eng
KW - Lipschitz invariant; signature operator; topological 4-manifold; ZFM 531.58044; Lipschitz structure
UR - http://eudml.org/doc/103995
ER -

References

top
  1. [1] M. F. ATIYAH, I. M. SINGER, The Index of Elliptic Operators, Part III: Annals of Math., 87 (1968), 546-604. Zbl0164.24301MR38 #5245
  2. [2] J. W. MILNOR, J. D. STASHEFF, Characteristic Classes, Princeton, 1974. Zbl0298.57008MR55 #13428
  3. [3] S. P. NOVIKOV, Topological Invariance of rational Pontrjagin Classes, Doklady A.N.S.S.S.R., 163 (2) (1965), 921-923. Zbl0146.19502
  4. [4] I. M. SINGER, Future Extension of Index Theory and Elliptic Operators, in Prospects in Mathematics, Annals of Math. Studies, 70 (1971), 171-185. Zbl0247.58011MR49 #8061
  5. [5] D. SULLIVAN, Hyperbolic Geometry and Homeomorphisms, in Geometric Topology, Proc. Georgia Topology Conf. Athens, Georgia, 1977, 543-555, ed. J. C. Cantrell, Academic Press, 1979. Zbl0478.57007
  6. [6] N. TELEMAN, The index of Signature Operators on Lipschitz Manifolds, Publ. Math. I.H.E.S., this volume, 39-78. Zbl0531.58044MR85f:58112
  7. [7] P. TUKIA, J. VÄISÄLÄ, Lipschitz and quasiconformal approximation and extension, Ann. Acad. Sci. Fenn. Ser. A, 16 (1981), 303-342. Zbl0448.30021MR84a:57016
  8. [8] P. TUKIA, J. VÄISÄLÄQuasiconformal extension from dimension n to n + 1, Annals of Math., 115 (1982), 331-348. Zbl0484.30017MR84i:30030

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.