On isomorphisms of geometrically finite Möbius groups

Pekka Tukia

Publications Mathématiques de l'IHÉS (1985)

  • Volume: 61, page 171-214
  • ISSN: 0073-8301

How to cite

top

Tukia, Pekka. "On isomorphisms of geometrically finite Möbius groups." Publications Mathématiques de l'IHÉS 61 (1985): 171-214. <http://eudml.org/doc/104003>.

@article{Tukia1985,
author = {Tukia, Pekka},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {type-preserving isomorphism; geometrically finite Möbius groups; Mostow's rigidity theorem},
language = {eng},
pages = {171-214},
publisher = {Institut des Hautes Études Scientifiques},
title = {On isomorphisms of geometrically finite Möbius groups},
url = {http://eudml.org/doc/104003},
volume = {61},
year = {1985},
}

TY - JOUR
AU - Tukia, Pekka
TI - On isomorphisms of geometrically finite Möbius groups
JO - Publications Mathématiques de l'IHÉS
PY - 1985
PB - Institut des Hautes Études Scientifiques
VL - 61
SP - 171
EP - 214
LA - eng
KW - type-preserving isomorphism; geometrically finite Möbius groups; Mostow's rigidity theorem
UR - http://eudml.org/doc/104003
ER -

References

top
  1. [1] L. V. AHLFORS, Fundamental polyhedrons and limit point sets of Kleinian groups, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 251-254. Zbl0132.30801
  2. [2] B. APANASOV, Geometrically finite hyperbolic structures on manifolds, Ann. Global Analysis and Geometry. 1 (3) (1983), 1-22. Zbl0531.57012
  3. [3] B. APANASOV, Geometrically finite groups of spatial transformations, Sibirskij Mat. J. 23 (6) (1983), 16-27 (Russian). Zbl0519.30038MR84h:30075
  4. [4] B. APANASOV, Discrete transformation groups and structures of manifolds, Novosibirsk, Nauka, 1983 (Russian). Zbl0571.57002
  5. [5] A. F. BEARDON and B. MASKIT, Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math. 132 (1974), 1-12. Zbl0277.30017MR48 #11489
  6. [6] V. A. EFREMOVIČ and E. S. TIHOMIROVA, Equimorphisms of hyperbolic spaces, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1139-1144 (Russian). Zbl0134.16002MR29 #6374
  7. [7] W. J. FLOYD, Group completions and limit sets of Kleinian groups, Inventiones Math. 57 (1980), 205-218. Zbl0428.20022MR81e:57002
  8. [8] F. W. GEHRING and B. P. PALKA, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 50-74. Zbl0349.30019MR55 #10676
  9. [9] W. HUREWICZ and H. WALLMAN, Dimension theory, Princeton University Press, Princeton, 1948. Zbl0036.12501
  10. [10] W. JACO, Lectures on three-manifold topology, CBMS Conference. 43, American Mathematical Society, Providence, 1980. Zbl0433.57001MR81k:57009
  11. [11] K. JOHANNSON, Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in Mathematics. 761, Springer-Verlag, Berlin-Heidelberg-New York, 1979. Zbl0412.57007MR82c:57005
  12. [12] J. A. KELINGOS, On the maximal dilatation of quasiconformal extensions, Ann. Acad. Sci. Fenn. Ser. A I. 478 (1971), 1-8. Zbl0212.10502MR44 #430
  13. [13] O. LEHTO and K. I. VIRTANEN, Quasiconformal mappings in the plane, Springer-Verlag, Berlin-Heidelberg-New York, 1973. Zbl0267.30016MR49 #9202
  14. [14] A. MARDEN, The geometry of finitely generated kleinian groups, Annals of Math. 99 (1974), 383-462. Zbl0282.30014MR50 #2485
  15. [15] A. MARDEN, Isomorphisms between fuchsian groups, in Advances in complex function theory, ed. by W. KIRWAN & L. ZALCMAN, Lecture Notes in Mathematics 505, Springer Verlag, Berlin-Heidelberg-New York, 1976, 56-78. Zbl0335.20024MR54 #540
  16. [16] A. MARDEN and B. MASKIT, On the isomorphism theorem for Kleinian groups, Inventiones Math. 51 (1979), 9-14. Zbl0399.30037MR80f:30037
  17. [17] G. A. MARGULIS, Isometry of closed manifolds of constant negative curvature with the same fundamental group, Dokl. Akad. Nauk SSSR. 192 (1979), 736-737 (= Soviet Math. Dokl. 11 (1970), 722-723). Zbl0213.48202MR42 #1012
  18. [18] B. MASKIT, On boundaries of Teichmüller spaces and on kleinian groups: II, Annals of Math. 91 (1970), 607-639. Zbl0197.06003MR45 #7045
  19. [19] B. MASKIT, Intersections of component subgroups of Kleinian groups, in Discontinuous groups and Riemann surfaces, ed. by L. GREENBERG, Annals of Mathematics Studies. 79, Princeton University Press, Princeton, 1974, 349-367. Zbl0305.30021MR50 #7514
  20. [20] B. MASKIT, Isomorphisms of function groups, J. Analyse Math. 32 (1977), 63-82. Zbl0392.30028MR57 #3381
  21. [21] B. MASKIT, On the classification of Kleinian groups II-Signatures, Acta Math. 138 (1977), 17-42. Zbl0358.30011MR56 #3288b
  22. [22] G. D. MOSTOW, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53-104. Zbl0189.09402MR38 #4679
  23. [23] G. D. MOSTOW, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies. 78, Princeton University Press, Princeton, 1973. Zbl0265.53039MR52 #5874
  24. [24] J. NIELSEN, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927), 189-358. Zbl53.0545.12JFM53.0545.12
  25. [25] G. PRASAD, Strong rigidity of Q-rank I lattices, Inventiones Math. 21 (1973), 255-286. Zbl0264.22009MR52 #5875
  26. [26] H. M. REIMANN, Invariant extension of quasiconformal deformations, to appear. Zbl0592.30025
  27. [27] A. SELBERG, On discontinuous groups in higher-dimensional symmetric spaces, in Contributions to function theory, TATA Inst. of Fund. Research, Bombay, 1960, 147-164. Zbl0201.36603MR24 #A188
  28. [28] D. SULLIVAN, Hyperbolic geometry and homeomorphisms, in Geometric topology, Proceedings of the 1977 Georgia Topology Conference, ed. by J. C. CANTRELL, Academic Press, New York-London, 1979, 543-555. Zbl0478.57007MR81m:57012
  29. [29] W. P. THURSTON, The geometry and topology of three-manifolds, Mimeographed lecture notes, Princeton, 1980. 
  30. [30] P. TUKIA, On discrete groups of the unit disk and their isomorphisms, Ann. Acad. Sci. Fenn. Ser. AI. 504 (1972), 1-45. Zbl0225.30022MR46 #5613
  31. [31] P. TUKIA, Extension of boundary homeomorphisms of discrete groups of the unit disk, Ibid. 548 (1973), 1-16. Zbl0265.30023MR49 #3123
  32. [32] P. TUKIA, Quasiconformal extension of quasisymmetric mappings compatible with a Möbius group, Acta Math. 154 (1985). Zbl0562.30018MR86f:30024
  33. [33] P. TUKIA, The Hausdorff dimension of the limit set of a geometrically finite Kleinian group, Acta Math. 152 (1984), 127-140. Zbl0539.30034MR85m:30031
  34. [34] P. TUKIA, Rigidity theorems for Möbius groups, to appear. Zbl0674.30038
  35. [35] P. TUKIA, Differentiability and rigidity of Möbius groups, to appear. Zbl0564.30033
  36. [36] P. TUKIA, On limit sets of geometrically finite Möbius groups, Math. Scandinavica, to appear. 
  37. [37] P. TUKIA and J. VÄISÄLÄ, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I. 5 (1980) 97-114. Zbl0403.54005MR82g:30038
  38. [38] P. TUKIA and J. VÄISÄLÄ, Lipschitz and quasiconformal approximation and extension, Ibid. 6 (1981), 303-342. Zbl0448.30021MR84a:57016
  39. [39] P. TUKIA and J. VÄISÄLÄ, Quasiconformal extension from dimension n to n + 1, Annals of Math. 115 (1982), 331-348. Zbl0484.30017MR84i:30030
  40. [40] J. VÄISÄLÄ, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics. 229, Springer-Verlag, Berlin-Heidelberg-New York, 1971. Zbl0221.30031MR56 #12260
  41. [41] N. J. WIELENBERG, Discrete Moebius groups : Fundamental polyhedra and convergence, American J. of Math. 99 (1977), 861-877. Zbl0373.57024MR57 #16579
  42. [42] J. A. WOLF, Spaces of constant curvature, Publish or Perish Inc., Berkeley, 1977. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.