Quasi-conformal mappings in -space and the rigidity of hyperbolic space forms

G. D. Mostow

Publications Mathématiques de l'IHÉS (1968)

  • Volume: 34, page 53-104
  • ISSN: 0073-8301

How to cite

top

Mostow, G. D.. "Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms." Publications Mathématiques de l'IHÉS 34 (1968): 53-104. <http://eudml.org/doc/103882>.

@article{Mostow1968,
author = {Mostow, G. D.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {complex functions},
language = {eng},
pages = {53-104},
publisher = {Institut des Hautes Études Scientifiques},
title = {Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms},
url = {http://eudml.org/doc/103882},
volume = {34},
year = {1968},
}

TY - JOUR
AU - Mostow, G. D.
TI - Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms
JO - Publications Mathématiques de l'IHÉS
PY - 1968
PB - Institut des Hautes Études Scientifiques
VL - 34
SP - 53
EP - 104
LA - eng
KW - complex functions
UR - http://eudml.org/doc/103882
ER -

References

top
  1. [1] L. V. AHLFORS, On quasi-conformal mappings, J. Analyse Math., 3 (1954), 1-58. Zbl0057.06506MR16,348d
  2. [2] A. BOREL, Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math., 72 (1960), 179-188. Zbl0094.24901MR23 #A964
  3. [3] J. A. CLARKSON, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396-414. Zbl0015.35604MR1501880JFM62.0460.04
  4. [4] E. DI GIORGI, Su una teoria generale della misura (r—1)-dimensionale in un spazio ad r dimensioni, Ann. Mat. Pura Appl. Der., (4) 36 (1954), 191-213. Zbl0055.28504
  5. [5] E. DI GIORGI, Sulla differenziabilita e l'analiticita della estremali degli integrali multipli regolari, Mem. Accad. Sci Torino Cl. Sci Fis. Mat. Nat., 3 (1957), 25-43. Zbl0084.31901
  6. [6] H. FEDERER, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), 418-491. Zbl0089.38402MR22 #961
  7. [7] F. W. GEHRING, Symmetrization of rings in space, Trans. Amer. Math. Soc., 101 (1961), 499-519. Zbl0104.30002MR24 #A2677
  8. [8] F. W. GEHRING, Rings and quasi-conformal mappings in space, Trans. Amer. Math. Soc., 103 (1962), 353-393. Zbl0113.05805MR25 #3166
  9. [9] H. LEBESGUE, Sur le problème de Dirichlet, Rend. Circ. Palermo, 24 (1907), 371-402. JFM38.0392.01
  10. [10] C. LOEWNER, On the conformal capacity in space, J. Math. Mech., 8 (1959), 411-414. Zbl0086.28203MR21 #3538
  11. [11] F. I. MAUTNER, Geodesic flows on symmetric Riemannian spaces, Annals of Math., 65 (1957), 416-431. Zbl0084.37503MR18,929d
  12. [12] A. MORI, On quasi-conformality and pseudo-analyticity, Trans. Amer. Math. Soc., 84 (1957), 56-77. Zbl0077.07902MR18,646c
  13. [13] J. MOSER, A new proof of di Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13 (1960), 457-468. Zbl0111.09301MR30 #332
  14. [14] G. D. MOSTOW, Homogeneous spaces of finite invariant measure, Ann. of Math., 75 (1962), 17-37. Zbl0115.25702MR26 #2546
  15. [15] G. D. MOSTOW, On the conjugacy of subgroups of semi-simple groups, Proc. of Symposia in Pure Math., 9 (1966), 413-419. Zbl0199.06702MR34 #5965
  16. [16] R. NEVANLINNA, On differentiable mappings, Analytic Functions, Princeton Univ. Press (1960), 3-9. Zbl0100.35701MR22 #7075
  17. [17] H. RADEMACHER, Partielle und totale Differenzierbarkeit von Funktionen mehrerer Variabeln, Math. Annalen, 79 (1919), 340-359. JFM47.0243.01
  18. [18] S. SAKS, Theory of the integral, Warsaw, 1937. 
  19. [19] W. STEPANOFF, Sur les conditions de l'existence de la differentielle totale, Rec. Math. Soc. Moscow, 32 (1925), 511-526. JFM51.0207.07
  20. [20] O. TEICHMULLER, Untersuchungen über konforme und quasi-konforme Abbildungen, Deutsche Mathematik, 3 (1938), 621-678. Zbl0020.23801JFM64.0313.06

Citations in EuDML Documents

top
  1. Pierre Cartier, Spectre de l'équation de Schrödinger, application à la stabilité de la matière
  2. Rufus Bowen, Hausdorff dimension of quasi-circles
  3. Richard Evan Schwartz, The quasi-isometry classification of rank one lattices
  4. Jean-Louis Koszul, Rigidité forte des espaces riemanniens localement symétriques
  5. Pierre Pansu, Pincement des variétés à courbure négative d'après M. Gromov et W. Thurston
  6. Jacqueline Ferrand, Histoire de la réductibilité du groupe conforme des variétés riemanniennes (1964-1994)
  7. Dennis Sullivan, Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension fibrées sur
  8. Jacqueline Ferrand, Generalized condensers and conformal properties of riemannian manifolds with at least two ends
  9. Christophe Champetier, Structure quasi-conforme et dimension conforme d'après P. Pansu, M. Gromov et M. Bourdon
  10. Pekka Tukia, On isomorphisms of geometrically finite Möbius groups

NotesEmbed ?

top

You must be logged in to post comments.