Quasi-conformal mappings in n -space and the rigidity of hyperbolic space forms

G. D. Mostow

Publications Mathématiques de l'IHÉS (1968)

  • Volume: 34, page 53-104
  • ISSN: 0073-8301

How to cite

top

Mostow, G. D.. "Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms." Publications Mathématiques de l'IHÉS 34 (1968): 53-104. <http://eudml.org/doc/103882>.

@article{Mostow1968,
author = {Mostow, G. D.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {complex functions},
language = {eng},
pages = {53-104},
publisher = {Institut des Hautes Études Scientifiques},
title = {Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms},
url = {http://eudml.org/doc/103882},
volume = {34},
year = {1968},
}

TY - JOUR
AU - Mostow, G. D.
TI - Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms
JO - Publications Mathématiques de l'IHÉS
PY - 1968
PB - Institut des Hautes Études Scientifiques
VL - 34
SP - 53
EP - 104
LA - eng
KW - complex functions
UR - http://eudml.org/doc/103882
ER -

References

top
  1. [1] L. V. AHLFORS, On quasi-conformal mappings, J. Analyse Math., 3 (1954), 1-58. Zbl0057.06506MR16,348d
  2. [2] A. BOREL, Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math., 72 (1960), 179-188. Zbl0094.24901MR23 #A964
  3. [3] J. A. CLARKSON, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396-414. Zbl0015.35604MR1501880JFM62.0460.04
  4. [4] E. DI GIORGI, Su una teoria generale della misura (r—1)-dimensionale in un spazio ad r dimensioni, Ann. Mat. Pura Appl. Der., (4) 36 (1954), 191-213. Zbl0055.28504
  5. [5] E. DI GIORGI, Sulla differenziabilita e l'analiticita della estremali degli integrali multipli regolari, Mem. Accad. Sci Torino Cl. Sci Fis. Mat. Nat., 3 (1957), 25-43. Zbl0084.31901
  6. [6] H. FEDERER, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), 418-491. Zbl0089.38402MR22 #961
  7. [7] F. W. GEHRING, Symmetrization of rings in space, Trans. Amer. Math. Soc., 101 (1961), 499-519. Zbl0104.30002MR24 #A2677
  8. [8] F. W. GEHRING, Rings and quasi-conformal mappings in space, Trans. Amer. Math. Soc., 103 (1962), 353-393. Zbl0113.05805MR25 #3166
  9. [9] H. LEBESGUE, Sur le problème de Dirichlet, Rend. Circ. Palermo, 24 (1907), 371-402. JFM38.0392.01
  10. [10] C. LOEWNER, On the conformal capacity in space, J. Math. Mech., 8 (1959), 411-414. Zbl0086.28203MR21 #3538
  11. [11] F. I. MAUTNER, Geodesic flows on symmetric Riemannian spaces, Annals of Math., 65 (1957), 416-431. Zbl0084.37503MR18,929d
  12. [12] A. MORI, On quasi-conformality and pseudo-analyticity, Trans. Amer. Math. Soc., 84 (1957), 56-77. Zbl0077.07902MR18,646c
  13. [13] J. MOSER, A new proof of di Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13 (1960), 457-468. Zbl0111.09301MR30 #332
  14. [14] G. D. MOSTOW, Homogeneous spaces of finite invariant measure, Ann. of Math., 75 (1962), 17-37. Zbl0115.25702MR26 #2546
  15. [15] G. D. MOSTOW, On the conjugacy of subgroups of semi-simple groups, Proc. of Symposia in Pure Math., 9 (1966), 413-419. Zbl0199.06702MR34 #5965
  16. [16] R. NEVANLINNA, On differentiable mappings, Analytic Functions, Princeton Univ. Press (1960), 3-9. Zbl0100.35701MR22 #7075
  17. [17] H. RADEMACHER, Partielle und totale Differenzierbarkeit von Funktionen mehrerer Variabeln, Math. Annalen, 79 (1919), 340-359. JFM47.0243.01
  18. [18] S. SAKS, Theory of the integral, Warsaw, 1937. 
  19. [19] W. STEPANOFF, Sur les conditions de l'existence de la differentielle totale, Rec. Math. Soc. Moscow, 32 (1925), 511-526. JFM51.0207.07
  20. [20] O. TEICHMULLER, Untersuchungen über konforme und quasi-konforme Abbildungen, Deutsche Mathematik, 3 (1938), 621-678. Zbl0020.23801JFM64.0313.06

Citations in EuDML Documents

top
  1. Pierre Cartier, Spectre de l'équation de Schrödinger, application à la stabilité de la matière
  2. Rufus Bowen, Hausdorff dimension of quasi-circles
  3. Richard Evan Schwartz, The quasi-isometry classification of rank one lattices
  4. Jean-Louis Koszul, Rigidité forte des espaces riemanniens localement symétriques
  5. Pierre Pansu, Pincement des variétés à courbure négative d'après M. Gromov et W. Thurston
  6. Jacqueline Ferrand, Histoire de la réductibilité du groupe conforme des variétés riemanniennes (1964-1994)
  7. Dennis Sullivan, Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3 fibrées sur S 1
  8. Jacqueline Ferrand, Generalized condensers and conformal properties of riemannian manifolds with at least two ends
  9. Christophe Champetier, Structure quasi-conforme et dimension conforme d'après P. Pansu, M. Gromov et M. Bourdon
  10. Pekka Tukia, On isomorphisms of geometrically finite Möbius groups

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.