Quadratic vector fields in the plane have a finite number of limit cycles

Rodrigo Bamon

Publications Mathématiques de l'IHÉS (1986)

  • Volume: 64, page 111-142
  • ISSN: 0073-8301

How to cite

top

Bamon, Rodrigo. "Quadratic vector fields in the plane have a finite number of limit cycles." Publications Mathématiques de l'IHÉS 64 (1986): 111-142. <http://eudml.org/doc/104014>.

@article{Bamon1986,
author = {Bamon, Rodrigo},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Hilbert's 16-th problem; limit cycles; isolated periodic orbits; hyperbolic graphs; quadratic vector fields},
language = {eng},
pages = {111-142},
publisher = {Institut des Hautes Études Scientifiques},
title = {Quadratic vector fields in the plane have a finite number of limit cycles},
url = {http://eudml.org/doc/104014},
volume = {64},
year = {1986},
}

TY - JOUR
AU - Bamon, Rodrigo
TI - Quadratic vector fields in the plane have a finite number of limit cycles
JO - Publications Mathématiques de l'IHÉS
PY - 1986
PB - Institut des Hautes Études Scientifiques
VL - 64
SP - 111
EP - 142
LA - eng
KW - Hilbert's 16-th problem; limit cycles; isolated periodic orbits; hyperbolic graphs; quadratic vector fields
UR - http://eudml.org/doc/104014
ER -

References

top
  1. [A] A. ANDRONOV et al., Qualitative Theory of Second Order Dynamical Systems, John Wiley & Sons, New York, 1973. Zbl0282.34022MR50 #2619
  2. [C] W. COPPEL, A survey of Quadratic Systems, Journal of Differential Equations, 2 (1966), 293-304. Zbl0143.11903MR33 #4374
  3. [Ca] J. CARR, Applications of Center Manifold Theory, Applied Math. Sciences, 35, Springer-Verlag, 1981. Zbl0464.58001MR83g:34039
  4. [Ch-S] C. CHICONE and S. SCHAFER, Separatrix and Limit Cycles of Quadratic Systems and Dulac's Theorem, Transactions Amer. Math. Soc., 278 (1983), 585-612. Zbl0522.58041MR84m:58110
  5. [D] M. H. DULAC, Sur les cycles limites, Bull. Soc. Math. France, 51 (1923), 45-188. JFM49.0304.01
  6. [Du] F. DUMORTIER, Singularities of Vector Fields, Journal of Differential Equations, 23, I (1977), 53-106. Zbl0346.58002MR58 #31276
  7. [H-P-S] M. HIRSCH, C. PUGH and M. SHUB, Invariant Manifolds, Springer Lecture Notes in Math., 583 (1977). Zbl0355.58009MR58 #18595
  8. [I] Yu. S. Il'yaŠenko, Limit cycles of polynomial vector fields with non degenerate singular points in the real plane (in Russian), Functional Analysis and its applications, 18 (3) (1984), 32-34 (in translation : 18 (3) (1985), 199-209). Zbl0549.34033
  9. [P-L1] I. G. PETROVSKII and E. U. LANDIS, On the number of limit cycles of the equation dy/dx = P(x,y)/Q(x,y) where P and Q are polynomials of the second degree, Amer. Math. Soc. Transl. (2), 16 (1958), 177-221. Zbl0080.07502MR20 #1036
  10. [P-L2] I. G. PETROVSKII and E. U. LANDIS, On the number of limit cycles of the equation dy/dx = P(x,y)/Q(x,y) where P and Q are polynomials, Amer. Math. Soc. Transl. (2), 14 (1960), 181-200. Zbl0094.06304MR22 #3854
  11. [P-L3] I. G. PETROVSKII and E. U. LANDIS, Corrections to the articles : "On the number of limit cycles of the equation dy/dx = P(x,y)/Q(x,y) where P and Q are polynomials", Math. Sb.N.S., 48 (90) (1959). 253-255. MR23 #A1099
  12. [P-M] J. PALIS and W. de MELO, Geometric Theory of Dynamical Systems ; An Introduction, New York, Springer-Verlag, 1982. Zbl0491.58001MR84a:58004
  13. [S] J. SOTOMAYOR, Curvas definidas por equaçoes diferenciais no plano, 13° Colóquio Bras. de Mat., IMPA, 1981. MR84m:34004
  14. [Sh1] SHI SONGLING, A concrete example of the existence of four limit cycles for plane quadratic systems, Sci., Sinica, Ser. A, 23 (1980), 153-158. Zbl0431.34024MR81f:34037
  15. [Sh2] SHI SONGLING, A method for constructing cycles without contact around a weak focus, Journal of Differential Equations, 41 (1981), 301-312. Zbl0442.34029MR83e:58074

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.