C k -conjugacy of holomorphic flows near a singularity

Marc Chaperon

Publications Mathématiques de l'IHÉS (1986)

  • Volume: 64, page 143-183
  • ISSN: 0073-8301

How to cite

top

Chaperon, Marc. "$C^k$-conjugacy of holomorphic flows near a singularity." Publications Mathématiques de l'IHÉS 64 (1986): 143-183. <http://eudml.org/doc/104015>.

@article{Chaperon1986,
author = {Chaperon, Marc},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {germ of a holomorphic vector field; S-normal form; Poincaré domain; Siegel domain; Holomorphic conjugacy; -conjugacy; hyperbolic; weakly hyperbolic},
language = {eng},
pages = {143-183},
publisher = {Institut des Hautes Études Scientifiques},
title = {$C^k$-conjugacy of holomorphic flows near a singularity},
url = {http://eudml.org/doc/104015},
volume = {64},
year = {1986},
}

TY - JOUR
AU - Chaperon, Marc
TI - $C^k$-conjugacy of holomorphic flows near a singularity
JO - Publications Mathématiques de l'IHÉS
PY - 1986
PB - Institut des Hautes Études Scientifiques
VL - 64
SP - 143
EP - 183
LA - eng
KW - germ of a holomorphic vector field; S-normal form; Poincaré domain; Siegel domain; Holomorphic conjugacy; -conjugacy; hyperbolic; weakly hyperbolic
UR - http://eudml.org/doc/104015
ER -

References

top
  1. [A] V. I. ARNOL'D, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Moscou, Mir, 1980. Zbl0455.34001MR83a:34003
  2. [C] C. CAMACHO, On Rk X Zl-actions, in Differentiable Dynamical Systems, M. M. PEIXOTO ed., IMPA, Academic Press, 1973. Zbl0274.58006MR51 #11585
  3. [CKP] C. CAMACHO, N. KUIPER, J. PALIS, The topology of holomorphic flows with singularity, Publ. Math. I.H.E.S., 48 (1978), 5-38. Zbl0411.58018MR80j:58045
  4. [Ch 8o] M. CHAPERON, Propriétés génériques des germes d'actions différentiables de groupes de Lie commutatifs élémentaires, thèse, Université Paris 7, 1980. 
  5. [Ch 85] M. CHAPERON, Differential geometry and dynamics : two examples, in Singularities and Dynamical Systems, S. N. PNEVMATIKOS ed., Elsevier B. V. (North Holland), 1985, 187-207. Zbl0576.57029MR86k:58100
  6. [Ch 86] M. CHAPERON, Géométrie différentielle et singularités de systèmes dynamiques, Astérisque, 138-139 (1986). Zbl0601.58002MR88h:58039
  7. [Ch 86a] M. CHAPERON, Invariant manifolds and a preparation lemma for complex flows near a singularity, Preprint, École, Polytechnique, 1986. 
  8. [Ch 86b] M. CHAPERON, Ck-versal unfoldings of holomorphic flows near their singularities, Preprint, École Polytechnique 1986. 
  9. [Ch 86c] M. CHAPERON, C1-linearisable local holomorphic flows, to appear. 
  10. [Ch 86d] M. CHAPERON, Smooth conjugacy results for germs of smooth Zk X Rm-actions preserving various structures, to appear. 
  11. [CZ] C. C. CONLEY, E. ZEHNDER, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol'd, Invent. Math., 73 (1983), 33-49. Zbl0516.58017MR85e:58044
  12. [DR] F. DUMORTIER, R. ROUSSARIE, Smooth linearisation of germs of R2-actions and holomorphic vector fields, Ann. Inst. Fourier, 30 (1) (1980), 31-64. Zbl0418.58015MR81k:58060
  13. [G] J. GUCKENHEIMER, Hartman's theorem for complex flows in the Poincaré domain, Composition Math., 24 (1) (1972). Zbl0239.58007MR46 #920
  14. [I] Ju. S. Il'IAŠENKO, Global and local aspects of the theory of complex differential equations, Proceedings of the International Congress of Mathematicians, Helsinki, 1978, 821-826. Zbl0434.34003
  15. [LM] S. LÓPEZ DE MEDRANO, Topology of the intersection of quadrics in Rn, Preprint, Universidad Nacional Autónoma de Mexico, 1986. Zbl0681.57020
  16. [MR] J. MARTINET, J. P. RAMIS, Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math. I.H.E.S., 55 (1982), 63-164. Zbl0546.58038MR84k:34011
  17. [N] E. NELSON, Topics in dynamics, Part I, Flows, Princeton, 1970. Zbl0197.10702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.