Smooth Gevrey normal forms of vector fields near a fixed point

Laurent Stolovitch[1]

  • [1] CNRS, Laboratoire J.-A. Dieudonné U.M.R. 6621, Université de Nice - Sophia Antipolis, Parc Valrose 06108 Nice Cedex 02, France.

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 1, page 241-267
  • ISSN: 0373-0956

Abstract

top
We study germs of smooth vector fields in a neighborhood of a fixed point having an hyperbolic linear part at this point. It is well known that the “small divisors” are invisible either for the smooth linearization or normal form problem. We prove that this is completely different in the smooth Gevrey category. We prove that a germ of smooth α -Gevrey vector field with an hyperbolic linear part admits a smooth β -Gevrey transformation to a smooth β -Gevrey normal form. The Gevrey order β depends on the rate of accumulation to 0 of the small divisors. We show that a formally linearizable smooth Gevrey germ with the linear part satisfying Brjuno’s small divisors condition can be linearized in the same Gevrey class.

How to cite

top

Stolovitch, Laurent. "Smooth Gevrey normal forms of vector fields near a fixed point." Annales de l’institut Fourier 63.1 (2013): 241-267. <http://eudml.org/doc/275549>.

@article{Stolovitch2013,
abstract = {We study germs of smooth vector fields in a neighborhood of a fixed point having an hyperbolic linear part at this point. It is well known that the “small divisors” are invisible either for the smooth linearization or normal form problem. We prove that this is completely different in the smooth Gevrey category. We prove that a germ of smooth $\alpha $-Gevrey vector field with an hyperbolic linear part admits a smooth $\beta $-Gevrey transformation to a smooth $\beta $-Gevrey normal form. The Gevrey order $\beta $ depends on the rate of accumulation to $0$ of the small divisors. We show that a formally linearizable smooth Gevrey germ with the linear part satisfying Brjuno’s small divisors condition can be linearized in the same Gevrey class.},
affiliation = {CNRS, Laboratoire J.-A. Dieudonné U.M.R. 6621, Université de Nice - Sophia Antipolis, Parc Valrose 06108 Nice Cedex 02, France.},
author = {Stolovitch, Laurent},
journal = {Annales de l’institut Fourier},
keywords = {Hyperbolic dynamical systems; normal forms; linearization; small divisors; resonances; Gevrey classes; hyperbolic dynamical systems},
language = {eng},
number = {1},
pages = {241-267},
publisher = {Association des Annales de l’institut Fourier},
title = {Smooth Gevrey normal forms of vector fields near a fixed point},
url = {http://eudml.org/doc/275549},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Stolovitch, Laurent
TI - Smooth Gevrey normal forms of vector fields near a fixed point
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 1
SP - 241
EP - 267
AB - We study germs of smooth vector fields in a neighborhood of a fixed point having an hyperbolic linear part at this point. It is well known that the “small divisors” are invisible either for the smooth linearization or normal form problem. We prove that this is completely different in the smooth Gevrey category. We prove that a germ of smooth $\alpha $-Gevrey vector field with an hyperbolic linear part admits a smooth $\beta $-Gevrey transformation to a smooth $\beta $-Gevrey normal form. The Gevrey order $\beta $ depends on the rate of accumulation to $0$ of the small divisors. We show that a formally linearizable smooth Gevrey germ with the linear part satisfying Brjuno’s small divisors condition can be linearized in the same Gevrey class.
LA - eng
KW - Hyperbolic dynamical systems; normal forms; linearization; small divisors; resonances; Gevrey classes; hyperbolic dynamical systems
UR - http://eudml.org/doc/275549
ER -

References

top
  1. V.I. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, (1980), Mir Zbl0455.34001MR898218
  2. G. R. Belickiĭ, Invariant normal forms of formal series, Funktsional. Anal. i Prilozhen 13 (1979), 59-60 MR527522
  3. S. Benzoni, Équations différentielles ordinaires, (2007) 
  4. B. Braaksma, L. Stolovitch, Small divisors and large multipliers, Ann. Inst. Fourier (Grenoble) 57 (2007), 603-628 Zbl1138.37028MR2310952
  5. Joaquim Bruna, An extension theorem of Whitney type for non-quasi-analytic classes of functions, J. London Math. Soc. (2) 22 (1980), 495-505 Zbl0419.26010MR596328
  6. A.D. Bruno, Analytical form of differential equations I, Trans. Mosc. Math. Soc 25 ((1971)), 131-288 Zbl0272.34018
  7. A.D. Bruno, Analytical form of differential equations II, Trans. Mosc. Math. Soc 26 ((1972)), 199-239 Zbl0283.34013
  8. Timoteo Carletti, The Lagrange inversion formula on non-Archimedean fields. Non-analytical form of differential and finite difference equations, Discrete Contin. Dyn. Syst. 9 (2003), 835-858 Zbl1036.37017MR1903046
  9. Timoteo Carletti, Stefano Marmi, Linearization of analytic and non-analytic germs of diffeomorphisms of ( C , 0 ) , Bull. Soc. Math. France 128 (2000), 59-85 Zbl0997.37017MR1765828
  10. M. Chaperon, C k -conjugacy of holomorphic flows near a singularity, Publ. Math. I.H.E.S. 64 (1986), 143-183 Zbl0625.57011MR876162
  11. M. Chaperon, Géométrie différentielle et singularités de systèmes dynamiques, (1986) Zbl0601.58002MR858911
  12. M. Chaperon, Calcul différentiel et calcul intégral, (2008), Dunod 
  13. Freddy Dumortier, Jaume Llibre, Joan C. Artés, Qualitative theory of planar differential systems, (2006), Springer-Verlag, Berlin Zbl1110.34002MR2256001
  14. C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet, G. Iooss, A simple global characterization for normal forms of singular vector fields, Phys. D 28 (1987), 95-127 Zbl0633.58020MR923885
  15. E. Fischer, Über die Differentiationsprozesse der Algebra, J. für Math. 148 (1917), 1-78 Zbl46.1436.02
  16. J.-P Françoise, Géométrie analytique et systèmes dynamiques, (1995), Presses Universitaires de France, Paris MR1620294
  17. Yu. S. Il’yashenko, S. Yu. Yakovenko, Finitely smooth normal forms of local families of diffeomorphisms and vector fields, Uspekhi Mat. Nauk 46 (1991), 3-39, 240 Zbl0729.58012MR1109035
  18. G. Iooss, E. Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differential Equations 212 (2005), 1-61 Zbl1072.34039MR2130546
  19. H. Ito, Convergence of birkhoff normal forms for integrable systems, Comment. Math. Helv. 64 (1989), 412-461 Zbl0686.58021MR998858
  20. Hikosaburo Komatsu, The implicit function theorem for ultradifferentiable mappings, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), 69-72 Zbl0467.26004MR531445
  21. Hikosaburo Komatsu, Ultradifferentiability of solutions of ordinary differential equations, Proc. Japan Acad. Ser. A Math. Sci. 54 (1980), 137-142 Zbl0486.34004MR575993
  22. E. Lombardi, L. Stolovitch, Forme normale de perturbation de champs de vecteurs quasi-homogènes, C.R. Acad. Sci, Paris, Série I 347 (2009), 143-146 Zbl1161.37037MR2538101
  23. E. Lombardi, L. Stolovitch, Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation, Ann. Scient. Ec. Norm. Sup. (2010), 659-718 Zbl1202.37071MR2722512
  24. J.-P. Marco, D. Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. Inst. Hautes Études Sci. 96 (2003), 199-275 Zbl1086.37031MR1986314
  25. G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. I. Birkhoff normal forms, Ann. Henri Poincaré 1 (2000), 223-248 Zbl0970.37050MR1770799
  26. G. Popov, KAM theorem for Gevrey Hamiltonians, Ergodic Theory Dynam. Systems 24 (2004), 1753-1786 Zbl1088.37030MR2104602
  27. Luigi Rodino, Linear partial differential operators in Gevrey spaces, (1993), World Scientific Publishing Co. Inc., River Edge, NJ Zbl0869.35005MR1249275
  28. R. Roussarie, Modèles locaux de champs et de formes, 30 (1975) Zbl0327.57017MR440570
  29. H. S. Shapiro, An algebraic theorem of E. Fischer, and the holomorphic Goursat problem, Bull. London Math. Soc. 21 (1989), 513-537 Zbl0706.35034MR1018198
  30. C. E. Shin, S.-Y. Chung, D. Kim, Gevrey and analytic convergence of Picard’s successive approximations, Integral Transforms Spec. Funct. 14 (2003), 19-30 Zbl1033.34016MR1949213
  31. C.L. Siegel, Iterations of analytic functions, Ann. Math. 43 (1942), 807-812 Zbl0061.14904MR7044
  32. S. Sternberg, On the structure of local homeomorphisms of euclidean n -space. II, Amer. J. Math. 80 (1958), 623-631 Zbl0083.31406MR96854
  33. L. Stolovitch, Sur un théorème de Dulac, Ann. Inst. Fourier 44 (1994), 1397-1433 Zbl0820.34023MR1313789
  34. L. Stolovitch, Singular complete integrabilty, Publ. Math. I.H.E.S. 91 (2000), 133-210 Zbl0997.32024MR1828744
  35. L. Stolovitch, Normalisation holomorphe d’algèbres de type Cartan de champs de vecteurs holomorphes singuliers, Ann. of Math. 161 (2005), 589-612 Zbl1080.32019MR2153396
  36. L. Stolovitch, Normal Forms of holomorphic dynamical systems, Hamiltonian dynamical systems and applications (2008), 249-284, CraigW.W. Zbl1146.37033MR2446258
  37. L. Stolovitch, Progress in normal form theory, Nonlinearity 22 (2009), R77-R99 Zbl1175.37002MR2519674
  38. J. Vey, Sur certains systèmes dynamiques séparables, Am. Journal of Math. 100 (1978), 591-614 Zbl0384.58012MR501141
  39. J. Vey, Algèbres commutatives de champs de vecteurs isochores, Bull. Soc. Math. France 107 (1979), 423-432 Zbl0426.58022MR557079
  40. Claude Wagschal, Le problème de Goursat non linéaire, J. Math. Pures Appl. (9) 59 (1979), 309-337 Zbl0427.35021MR544256
  41. Claude Wagschal, Dérivation, intégration, (1999), Hermann, Paris Zbl0913.00006MR1682338
  42. Wolfgang Wasow, Asymptotic expansions for ordinary differential equations, (1987), Dover Publications Inc., New York Zbl0644.34003MR919406
  43. N. T. Zung, Convergence versus integrability in Birkhoff normal form, Ann. of Math. (2) 161 (2005), 141-156 Zbl1076.37045MR2150385

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.