Smooth Gevrey normal forms of vector fields near a fixed point
- [1] CNRS, Laboratoire J.-A. Dieudonné U.M.R. 6621, Université de Nice - Sophia Antipolis, Parc Valrose 06108 Nice Cedex 02, France.
Annales de l’institut Fourier (2013)
- Volume: 63, Issue: 1, page 241-267
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topStolovitch, Laurent. "Smooth Gevrey normal forms of vector fields near a fixed point." Annales de l’institut Fourier 63.1 (2013): 241-267. <http://eudml.org/doc/275549>.
@article{Stolovitch2013,
abstract = {We study germs of smooth vector fields in a neighborhood of a fixed point having an hyperbolic linear part at this point. It is well known that the “small divisors” are invisible either for the smooth linearization or normal form problem. We prove that this is completely different in the smooth Gevrey category. We prove that a germ of smooth $\alpha $-Gevrey vector field with an hyperbolic linear part admits a smooth $\beta $-Gevrey transformation to a smooth $\beta $-Gevrey normal form. The Gevrey order $\beta $ depends on the rate of accumulation to $0$ of the small divisors. We show that a formally linearizable smooth Gevrey germ with the linear part satisfying Brjuno’s small divisors condition can be linearized in the same Gevrey class.},
affiliation = {CNRS, Laboratoire J.-A. Dieudonné U.M.R. 6621, Université de Nice - Sophia Antipolis, Parc Valrose 06108 Nice Cedex 02, France.},
author = {Stolovitch, Laurent},
journal = {Annales de l’institut Fourier},
keywords = {Hyperbolic dynamical systems; normal forms; linearization; small divisors; resonances; Gevrey classes; hyperbolic dynamical systems},
language = {eng},
number = {1},
pages = {241-267},
publisher = {Association des Annales de l’institut Fourier},
title = {Smooth Gevrey normal forms of vector fields near a fixed point},
url = {http://eudml.org/doc/275549},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Stolovitch, Laurent
TI - Smooth Gevrey normal forms of vector fields near a fixed point
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 1
SP - 241
EP - 267
AB - We study germs of smooth vector fields in a neighborhood of a fixed point having an hyperbolic linear part at this point. It is well known that the “small divisors” are invisible either for the smooth linearization or normal form problem. We prove that this is completely different in the smooth Gevrey category. We prove that a germ of smooth $\alpha $-Gevrey vector field with an hyperbolic linear part admits a smooth $\beta $-Gevrey transformation to a smooth $\beta $-Gevrey normal form. The Gevrey order $\beta $ depends on the rate of accumulation to $0$ of the small divisors. We show that a formally linearizable smooth Gevrey germ with the linear part satisfying Brjuno’s small divisors condition can be linearized in the same Gevrey class.
LA - eng
KW - Hyperbolic dynamical systems; normal forms; linearization; small divisors; resonances; Gevrey classes; hyperbolic dynamical systems
UR - http://eudml.org/doc/275549
ER -
References
top- V.I. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, (1980), Mir Zbl0455.34001MR898218
- G. R. Belickiĭ, Invariant normal forms of formal series, Funktsional. Anal. i Prilozhen 13 (1979), 59-60 MR527522
- S. Benzoni, Équations différentielles ordinaires, (2007)
- B. Braaksma, L. Stolovitch, Small divisors and large multipliers, Ann. Inst. Fourier (Grenoble) 57 (2007), 603-628 Zbl1138.37028MR2310952
- Joaquim Bruna, An extension theorem of Whitney type for non-quasi-analytic classes of functions, J. London Math. Soc. (2) 22 (1980), 495-505 Zbl0419.26010MR596328
- A.D. Bruno, Analytical form of differential equations I, Trans. Mosc. Math. Soc 25 ((1971)), 131-288 Zbl0272.34018
- A.D. Bruno, Analytical form of differential equations II, Trans. Mosc. Math. Soc 26 ((1972)), 199-239 Zbl0283.34013
- Timoteo Carletti, The Lagrange inversion formula on non-Archimedean fields. Non-analytical form of differential and finite difference equations, Discrete Contin. Dyn. Syst. 9 (2003), 835-858 Zbl1036.37017MR1903046
- Timoteo Carletti, Stefano Marmi, Linearization of analytic and non-analytic germs of diffeomorphisms of , Bull. Soc. Math. France 128 (2000), 59-85 Zbl0997.37017MR1765828
- M. Chaperon, -conjugacy of holomorphic flows near a singularity, Publ. Math. I.H.E.S. 64 (1986), 143-183 Zbl0625.57011MR876162
- M. Chaperon, Géométrie différentielle et singularités de systèmes dynamiques, (1986) Zbl0601.58002MR858911
- M. Chaperon, Calcul différentiel et calcul intégral, (2008), Dunod
- Freddy Dumortier, Jaume Llibre, Joan C. Artés, Qualitative theory of planar differential systems, (2006), Springer-Verlag, Berlin Zbl1110.34002MR2256001
- C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet, G. Iooss, A simple global characterization for normal forms of singular vector fields, Phys. D 28 (1987), 95-127 Zbl0633.58020MR923885
- E. Fischer, Über die Differentiationsprozesse der Algebra, J. für Math. 148 (1917), 1-78 Zbl46.1436.02
- J.-P Françoise, Géométrie analytique et systèmes dynamiques, (1995), Presses Universitaires de France, Paris MR1620294
- Yu. S. Il’yashenko, S. Yu. Yakovenko, Finitely smooth normal forms of local families of diffeomorphisms and vector fields, Uspekhi Mat. Nauk 46 (1991), 3-39, 240 Zbl0729.58012MR1109035
- G. Iooss, E. Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differential Equations 212 (2005), 1-61 Zbl1072.34039MR2130546
- H. Ito, Convergence of birkhoff normal forms for integrable systems, Comment. Math. Helv. 64 (1989), 412-461 Zbl0686.58021MR998858
- Hikosaburo Komatsu, The implicit function theorem for ultradifferentiable mappings, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), 69-72 Zbl0467.26004MR531445
- Hikosaburo Komatsu, Ultradifferentiability of solutions of ordinary differential equations, Proc. Japan Acad. Ser. A Math. Sci. 54 (1980), 137-142 Zbl0486.34004MR575993
- E. Lombardi, L. Stolovitch, Forme normale de perturbation de champs de vecteurs quasi-homogènes, C.R. Acad. Sci, Paris, Série I 347 (2009), 143-146 Zbl1161.37037MR2538101
- E. Lombardi, L. Stolovitch, Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation, Ann. Scient. Ec. Norm. Sup. (2010), 659-718 Zbl1202.37071MR2722512
- J.-P. Marco, D. Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. Inst. Hautes Études Sci. 96 (2003), 199-275 Zbl1086.37031MR1986314
- G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. I. Birkhoff normal forms, Ann. Henri Poincaré 1 (2000), 223-248 Zbl0970.37050MR1770799
- G. Popov, KAM theorem for Gevrey Hamiltonians, Ergodic Theory Dynam. Systems 24 (2004), 1753-1786 Zbl1088.37030MR2104602
- Luigi Rodino, Linear partial differential operators in Gevrey spaces, (1993), World Scientific Publishing Co. Inc., River Edge, NJ Zbl0869.35005MR1249275
- R. Roussarie, Modèles locaux de champs et de formes, 30 (1975) Zbl0327.57017MR440570
- H. S. Shapiro, An algebraic theorem of E. Fischer, and the holomorphic Goursat problem, Bull. London Math. Soc. 21 (1989), 513-537 Zbl0706.35034MR1018198
- C. E. Shin, S.-Y. Chung, D. Kim, Gevrey and analytic convergence of Picard’s successive approximations, Integral Transforms Spec. Funct. 14 (2003), 19-30 Zbl1033.34016MR1949213
- C.L. Siegel, Iterations of analytic functions, Ann. Math. 43 (1942), 807-812 Zbl0061.14904MR7044
- S. Sternberg, On the structure of local homeomorphisms of euclidean -space. II, Amer. J. Math. 80 (1958), 623-631 Zbl0083.31406MR96854
- L. Stolovitch, Sur un théorème de Dulac, Ann. Inst. Fourier 44 (1994), 1397-1433 Zbl0820.34023MR1313789
- L. Stolovitch, Singular complete integrabilty, Publ. Math. I.H.E.S. 91 (2000), 133-210 Zbl0997.32024MR1828744
- L. Stolovitch, Normalisation holomorphe d’algèbres de type Cartan de champs de vecteurs holomorphes singuliers, Ann. of Math. 161 (2005), 589-612 Zbl1080.32019MR2153396
- L. Stolovitch, Normal Forms of holomorphic dynamical systems, Hamiltonian dynamical systems and applications (2008), 249-284, CraigW.W. Zbl1146.37033MR2446258
- L. Stolovitch, Progress in normal form theory, Nonlinearity 22 (2009), R77-R99 Zbl1175.37002MR2519674
- J. Vey, Sur certains systèmes dynamiques séparables, Am. Journal of Math. 100 (1978), 591-614 Zbl0384.58012MR501141
- J. Vey, Algèbres commutatives de champs de vecteurs isochores, Bull. Soc. Math. France 107 (1979), 423-432 Zbl0426.58022MR557079
- Claude Wagschal, Le problème de Goursat non linéaire, J. Math. Pures Appl. (9) 59 (1979), 309-337 Zbl0427.35021MR544256
- Claude Wagschal, Dérivation, intégration, (1999), Hermann, Paris Zbl0913.00006MR1682338
- Wolfgang Wasow, Asymptotic expansions for ordinary differential equations, (1987), Dover Publications Inc., New York Zbl0644.34003MR919406
- N. T. Zung, Convergence versus integrability in Birkhoff normal form, Ann. of Math. (2) 161 (2005), 141-156 Zbl1076.37045MR2150385
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.