Cuspidal local systems and graded Hecke algebras, I

George Lusztig

Publications Mathématiques de l'IHÉS (1988)

  • Volume: 67, page 145-202
  • ISSN: 0073-8301

How to cite

top

Lusztig, George. "Cuspidal local systems and graded Hecke algebras, I." Publications Mathématiques de l'IHÉS 67 (1988): 145-202. <http://eudml.org/doc/104030>.

@article{Lusztig1988,
author = {Lusztig, George},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Hecke algebras; affine Weyl groups; p-adic reductive groups; simple modules; equivariant homology; generalized flag variety; root data},
language = {eng},
pages = {145-202},
publisher = {Institut des Hautes Études Scientifiques},
title = {Cuspidal local systems and graded Hecke algebras, I},
url = {http://eudml.org/doc/104030},
volume = {67},
year = {1988},
}

TY - JOUR
AU - Lusztig, George
TI - Cuspidal local systems and graded Hecke algebras, I
JO - Publications Mathématiques de l'IHÉS
PY - 1988
PB - Institut des Hautes Études Scientifiques
VL - 67
SP - 145
EP - 202
LA - eng
KW - Hecke algebras; affine Weyl groups; p-adic reductive groups; simple modules; equivariant homology; generalized flag variety; root data
UR - http://eudml.org/doc/104030
ER -

References

top
  1. [1] A. A. BEILINSON, J. BERNSTEIN, P. DELIGNE, Faisceaux pervers, in “Analyse et topoligie sur les espaces signuliers”, Astérisque, 100 (1982), 5-17, Société Mathématique de France. Zbl0536.14011MR86g:32015
  2. [2] A. BOREL et al., Seminar on transformation groups, Ann. of Math. Studies, 46 (1960). Zbl0091.37202MR22 #7129
  3. [3] V. GINZBURG, Lagrangian construction for representations of Hecke algebras, Adv. in Math., 63 (1987), 100-112. Zbl0625.22012MR88e:22022
  4. [4] M. GORESKY, R. MACPHERSON, Intersection homology II, Invent. Math., 72 (1983), 77-129. Zbl0529.55007MR84i:57012
  5. [5] D. KAZHDAN, G. LUSZTIG, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math., 87 (1987), 153-215. Zbl0613.22004MR88d:11121
  6. [6] G. LUSZTIG, Coxeter orbits and eigenspaces of Frobenius, Invent. Math., 28 (1976), 101-159. Zbl0366.20031MR56 #12138
  7. [7] G. LUSZTIG, Representations of finite Chevalley groups, C.B.M.S. Regional Conference series in Math., 39, Amer. Math. Soc., 1978. Zbl0418.20037MR80f:20045
  8. [8] G. LUSZTIG, Green polynomials and singularities of unipotent classes, Adv. in Math., 42 (1981), 169-178. Zbl0473.20029MR83c:20059
  9. [9] G. LUSZTIG, Intersection cohomology complexes on a reductive group, Invent. Math., 75 (1984), 205-272. Zbl0547.20032MR86d:20050
  10. [10] G. LUSZTIG, Characters sheaves, I-V, Adv. in Math., 56 (1985), 193-237; 57 (1985), 226-265, 266-315; 59 (1986), 1-63; 61 (1986), 103-155. Zbl0602.20036
  11. [11] G. LUSZTIG, Fourier transforms on a semisimple Lie algebra over Fq, in “Algebraic Groups-Utrecht 1986”, Lecture Notes in Mathematics, 1271, Springer, 1987, 177-188. Zbl0654.20047MR89b:17015
  12. [12] G. LUSZTIG, N. SPALTENSTEIN, Induced unipotent classes, J. London Math. Soc., 19 (1979), 41-52. Zbl0407.20035MR82g:20070

NotesEmbed ?

top

You must be logged in to post comments.