Cuspidal local systems and graded Hecke algebras, I

George Lusztig

Publications Mathématiques de l'IHÉS (1988)

  • Volume: 67, page 145-202
  • ISSN: 0073-8301

How to cite

top

Lusztig, George. "Cuspidal local systems and graded Hecke algebras, I." Publications Mathématiques de l'IHÉS 67 (1988): 145-202. <http://eudml.org/doc/104030>.

@article{Lusztig1988,
author = {Lusztig, George},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Hecke algebras; affine Weyl groups; p-adic reductive groups; simple modules; equivariant homology; generalized flag variety; root data},
language = {eng},
pages = {145-202},
publisher = {Institut des Hautes Études Scientifiques},
title = {Cuspidal local systems and graded Hecke algebras, I},
url = {http://eudml.org/doc/104030},
volume = {67},
year = {1988},
}

TY - JOUR
AU - Lusztig, George
TI - Cuspidal local systems and graded Hecke algebras, I
JO - Publications Mathématiques de l'IHÉS
PY - 1988
PB - Institut des Hautes Études Scientifiques
VL - 67
SP - 145
EP - 202
LA - eng
KW - Hecke algebras; affine Weyl groups; p-adic reductive groups; simple modules; equivariant homology; generalized flag variety; root data
UR - http://eudml.org/doc/104030
ER -

References

top
  1. [1] A. A. BEILINSON, J. BERNSTEIN, P. DELIGNE, Faisceaux pervers, in “Analyse et topoligie sur les espaces signuliers”, Astérisque, 100 (1982), 5-17, Société Mathématique de France. Zbl0536.14011MR86g:32015
  2. [2] A. BOREL et al., Seminar on transformation groups, Ann. of Math. Studies, 46 (1960). Zbl0091.37202MR22 #7129
  3. [3] V. GINZBURG, Lagrangian construction for representations of Hecke algebras, Adv. in Math., 63 (1987), 100-112. Zbl0625.22012MR88e:22022
  4. [4] M. GORESKY, R. MACPHERSON, Intersection homology II, Invent. Math., 72 (1983), 77-129. Zbl0529.55007MR84i:57012
  5. [5] D. KAZHDAN, G. LUSZTIG, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math., 87 (1987), 153-215. Zbl0613.22004MR88d:11121
  6. [6] G. LUSZTIG, Coxeter orbits and eigenspaces of Frobenius, Invent. Math., 28 (1976), 101-159. Zbl0366.20031MR56 #12138
  7. [7] G. LUSZTIG, Representations of finite Chevalley groups, C.B.M.S. Regional Conference series in Math., 39, Amer. Math. Soc., 1978. Zbl0418.20037MR80f:20045
  8. [8] G. LUSZTIG, Green polynomials and singularities of unipotent classes, Adv. in Math., 42 (1981), 169-178. Zbl0473.20029MR83c:20059
  9. [9] G. LUSZTIG, Intersection cohomology complexes on a reductive group, Invent. Math., 75 (1984), 205-272. Zbl0547.20032MR86d:20050
  10. [10] G. LUSZTIG, Characters sheaves, I-V, Adv. in Math., 56 (1985), 193-237; 57 (1985), 226-265, 266-315; 59 (1986), 1-63; 61 (1986), 103-155. Zbl0602.20036
  11. [11] G. LUSZTIG, Fourier transforms on a semisimple Lie algebra over Fq, in “Algebraic Groups-Utrecht 1986”, Lecture Notes in Mathematics, 1271, Springer, 1987, 177-188. Zbl0654.20047MR89b:17015
  12. [12] G. LUSZTIG, N. SPALTENSTEIN, Induced unipotent classes, J. London Math. Soc., 19 (1979), 41-52. Zbl0407.20035MR82g:20070

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.