Racks and orbits of dressing transformations

A. A. Balinsky

Commentationes Mathematicae Universitatis Carolinae (2000)

  • Volume: 41, Issue: 3, page 437-444
  • ISSN: 0010-2628

Abstract

top
A new algebraic structure on the orbits of dressing transformations of the quasitriangular Poisson Lie groups is provided. This gives the topological interpretation of the link invariants associated with the Weinstein-Xu classical solutions of the quantum Yang-Baxter equation. Some applications to the three-dimensional topological quantum field theories are discussed.

How to cite

top

Balinsky, A. A.. "Racks and orbits of dressing transformations." Commentationes Mathematicae Universitatis Carolinae 41.3 (2000): 437-444. <http://eudml.org/doc/248604>.

@article{Balinsky2000,
abstract = {A new algebraic structure on the orbits of dressing transformations of the quasitriangular Poisson Lie groups is provided. This gives the topological interpretation of the link invariants associated with the Weinstein-Xu classical solutions of the quantum Yang-Baxter equation. Some applications to the three-dimensional topological quantum field theories are discussed.},
author = {Balinsky, A. A.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {automorphic set; Poisson Lie group; link invariants; automorphic set; Poisson Lie group; link invariants},
language = {eng},
number = {3},
pages = {437-444},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Racks and orbits of dressing transformations},
url = {http://eudml.org/doc/248604},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Balinsky, A. A.
TI - Racks and orbits of dressing transformations
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 3
SP - 437
EP - 444
AB - A new algebraic structure on the orbits of dressing transformations of the quasitriangular Poisson Lie groups is provided. This gives the topological interpretation of the link invariants associated with the Weinstein-Xu classical solutions of the quantum Yang-Baxter equation. Some applications to the three-dimensional topological quantum field theories are discussed.
LA - eng
KW - automorphic set; Poisson Lie group; link invariants; automorphic set; Poisson Lie group; link invariants
UR - http://eudml.org/doc/248604
ER -

References

top
  1. Atiyah M., Topological quantum field theories, I.H.E.S. 68 (1988), 175-186. (1988) Zbl0692.53053MR1001453
  2. Witten E., Quantum field theories and the Jones polynomial, Comm. Math. Phys. 121 351-399 (1989). (1989) MR0990772
  3. Masbaum G., Rourke C., Model categories and topological quantum field theories, Turkish J. Math. 18 (1994). (1994) Zbl0864.57032MR1270440
  4. Fenn R., Rourke C., Racks and links in codimension two, J. Knot Theory Ramifications 1 4 343-406 (1992). (1992) Zbl0787.57003MR1194995
  5. Joyce D., A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23 37-65 (1982). (1982) Zbl0474.57003MR0638121
  6. Brieskorn E., Automorphic sets and braids and singularities, in ``Braids'', Ed. J. Birman and A. Libgober, Contemp. Math. 78 (1998), 45-115. Zbl0716.20017MR0975077
  7. Weinstein A., Xu P., Classical solution of the quantum Yang-Baxter equation, Comm. Math. Phys. 148 309-343 (1992). (1992) MR1178147
  8. Yetter D.N., Topological quantum field theories associated to finite groups and crossed G -set, J. Knot Theory Ramifications 1 1 1-20 (1992). (1992) MR1155090
  9. Balinsky A., Braid Groups, in ``Oper. Theor. in Funct. Spaces'', ed. E. Gordon and M. Antonetz, Gorki State Univ., 1991 (in Russian). 
  10. Balinsky A., Weinstein-Xu invariants and link group representations I, e-preprint hep-th/9404168. 
  11. Birman J.S., New points of view in knot theory, Bull. Amer. Math. Soc. 28 253-287 (1993). (1993) Zbl0785.57001MR1191478
  12. Jones V.F.R., A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. 12 103-111 (1985). (1985) Zbl0564.57006MR0766964
  13. Drinfeld V.G., On some unsolved problems in quantum group theory, Lecture Notes in Math. 1510, 1992, pp.1-8. Zbl0765.17014MR1183474
  14. Freyd P.J., Yetter D.N., Braided compact closed categories with applications to low-dimensional topology, Adv. in Math. 77 (2) 156-182 (1989). (1989) Zbl0679.57003MR1020583
  15. Drinfeld V.G., Hamiltonian structures on Lie groups, Lie bialgebras and geometrical meaning of classical Yang-Baxter equations, Dokl. Akad. Nauk SSSR 2 285-287 (1982). (1982) MR0688240
  16. Reshetikhin N., Semenov-Tian-Shansky M., Quantum R-matrices and factorization problems, J. Diff. Geom. 31 533-550 (1988). (1988) Zbl0711.17008MR1075721
  17. Semenov-Tian-Shansky M.A., Dressing transformations and Poisson Lie group actions, Publ. RIMS, Kyoto University 21 1237-1260 (1985). (1985) MR0842417
  18. Weinstein A., Some remarks on dressing transformations, J. Fac. Sci. Univ. Tokyo, Sect. A, Math. 36 163-167 (1988). (1988) Zbl0653.58012MR0931446

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.