Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature
Fuquan Fang[1]; Xiang-Dong Li[2]; Zhenlei Zhang[1]
- [1] Capital Normal University Department of Mathematics Beijing (P.R.China)
- [2] Fudan University School of Mathematical Sciences No. 220, Han Dan Road Shanghai, 200433 (P.R.China) and Université Paul Sabatier Institut de Mathématiques 118 route de Narbonne 31062 Toulouse cedex 9 (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 2, page 563-573
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFang, Fuquan, Li, Xiang-Dong, and Zhang, Zhenlei. "Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature." Annales de l’institut Fourier 59.2 (2009): 563-573. <http://eudml.org/doc/10404>.
@article{Fang2009,
abstract = {In this paper, we prove two generalized versions of the Cheeger-Gromoll splitting theorem via the non-negativity of the Bakry-Émery Ricci curavture on complete Riemannian manifolds.},
affiliation = {Capital Normal University Department of Mathematics Beijing (P.R.China); Fudan University School of Mathematical Sciences No. 220, Han Dan Road Shanghai, 200433 (P.R.China) and Université Paul Sabatier Institut de Mathématiques 118 route de Narbonne 31062 Toulouse cedex 9 (France); Capital Normal University Department of Mathematics Beijing (P.R.China)},
author = {Fang, Fuquan, Li, Xiang-Dong, Zhang, Zhenlei},
journal = {Annales de l’institut Fourier},
keywords = {Busemann function; splitting theorem; Bakry-Émery Ricci curvature},
language = {eng},
number = {2},
pages = {563-573},
publisher = {Association des Annales de l’institut Fourier},
title = {Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature},
url = {http://eudml.org/doc/10404},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Fang, Fuquan
AU - Li, Xiang-Dong
AU - Zhang, Zhenlei
TI - Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 2
SP - 563
EP - 573
AB - In this paper, we prove two generalized versions of the Cheeger-Gromoll splitting theorem via the non-negativity of the Bakry-Émery Ricci curavture on complete Riemannian manifolds.
LA - eng
KW - Busemann function; splitting theorem; Bakry-Émery Ricci curvature
UR - http://eudml.org/doc/10404
ER -
References
top- D. Bakry, Michel Émery, Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84 1123 (1985), 177-206, Springer, Berlin Zbl0561.60080MR889476
- Dominique Bakry, L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on probability theory (Saint-Flour, 1992) 1581 (1994), 1-114, Springer, Berlin Zbl0856.47026MR1307413
- Dominique Bakry, Zhongmin Qian, Volume comparison theorems without Jacobi fields, Current trends in potential theory 4 (2005), 115-122, Theta, Bucharest Zbl1212.58019MR2243959
- Arthur L. Besse, Einstein manifolds, 10 (1987), Springer-Verlag, Berlin Zbl0613.53001MR867684
- E. Calabi, An extension of E. Hopf’s maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958), 45-56 Zbl0079.11801MR92069
- Jeff Cheeger, Detlef Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971/72), 119-128 Zbl0223.53033MR303460
- Jost Eschenburg, Ernst Heintze, An elementary proof of the Cheeger-Gromoll splitting theorem, Ann. Global Anal. Geom. 2 (1984), 141-151 Zbl0548.53041MR777905
- M. Fernández-López, E. García-Río, A remark on compact Ricci solitons, Math. Ann. 340 (2008), 893-896 Zbl1132.53023MR2372742
- David Gilbarg, Neil S. Trudinger, Elliptic partial differential equations of second order, 224 (1983), Springer-Verlag, Berlin Zbl0562.35001MR737190
- Mikhael Gromov, Structures métriques pour les variétés riemanniennes, 1 (1981), CEDIC, Paris Zbl0509.53034MR682063
- Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, 152 (1999), Birkhäuser Boston Inc., Boston, MA Zbl0953.53002MR1699320
- Xiang-Dong Li, Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. (9) 84 (2005), 1295-1361 Zbl1082.58036MR2170766
- Xue-Mei Li, On extensions of Myers’ theorem, Bull. London Math. Soc. 27 (1995), 392-396 Zbl0835.60056MR1335292
- André Lichnerowicz, Variétés riemanniennes à tenseur C non négatif, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A650-A653 Zbl0208.50003MR268812
- John Lott, Some geometric properties of the Bakry-Émery-Ricci tensor, Comment. Math. Helv. 78 (2003), 865-883 Zbl1038.53041MR2016700
- G. Perelman, The entropy forumla for the Ricci flow and its geometric applications Zbl1130.53001
- Zhongmin Qian, Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser. (2) 48 (1997), 235-242 Zbl0902.53032MR1458581
- R. Schoen, S.-T. Yau, Lectures on differential geometry, (1994), International Press, Cambridge, MA Zbl0830.53001MR1333601
- Guofang Wei, William C. Wylie, Comparison Geometry for the Bakry-Émery Ricci Tensor Zbl1189.53036
- William Wylie, Complete shrinking Ricci solitons have finite fundamental group, Proc. Amer. Math. Soc. 136 (2008), 1803-1806 Zbl1152.53057MR2373611
- Shunhui Zhu, The comparison geometry of Ricci curvature, Comparison geometry (Berkeley, CA, 1993–94) 30 (1997), 221-262, Cambridge Univ. Press, Cambridge Zbl0896.53036MR1452876
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.