Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature

Fuquan Fang[1]; Xiang-Dong Li[2]; Zhenlei Zhang[1]

  • [1] Capital Normal University Department of Mathematics Beijing (P.R.China)
  • [2] Fudan University School of Mathematical Sciences No. 220, Han Dan Road Shanghai, 200433 (P.R.China) and Université Paul Sabatier Institut de Mathématiques 118 route de Narbonne 31062 Toulouse cedex 9 (France)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 2, page 563-573
  • ISSN: 0373-0956

Abstract

top
In this paper, we prove two generalized versions of the Cheeger-Gromoll splitting theorem via the non-negativity of the Bakry-Émery Ricci curavture on complete Riemannian manifolds.

How to cite

top

Fang, Fuquan, Li, Xiang-Dong, and Zhang, Zhenlei. "Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature." Annales de l’institut Fourier 59.2 (2009): 563-573. <http://eudml.org/doc/10404>.

@article{Fang2009,
abstract = {In this paper, we prove two generalized versions of the Cheeger-Gromoll splitting theorem via the non-negativity of the Bakry-Émery Ricci curavture on complete Riemannian manifolds.},
affiliation = {Capital Normal University Department of Mathematics Beijing (P.R.China); Fudan University School of Mathematical Sciences No. 220, Han Dan Road Shanghai, 200433 (P.R.China) and Université Paul Sabatier Institut de Mathématiques 118 route de Narbonne 31062 Toulouse cedex 9 (France); Capital Normal University Department of Mathematics Beijing (P.R.China)},
author = {Fang, Fuquan, Li, Xiang-Dong, Zhang, Zhenlei},
journal = {Annales de l’institut Fourier},
keywords = {Busemann function; splitting theorem; Bakry-Émery Ricci curvature},
language = {eng},
number = {2},
pages = {563-573},
publisher = {Association des Annales de l’institut Fourier},
title = {Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature},
url = {http://eudml.org/doc/10404},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Fang, Fuquan
AU - Li, Xiang-Dong
AU - Zhang, Zhenlei
TI - Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 2
SP - 563
EP - 573
AB - In this paper, we prove two generalized versions of the Cheeger-Gromoll splitting theorem via the non-negativity of the Bakry-Émery Ricci curavture on complete Riemannian manifolds.
LA - eng
KW - Busemann function; splitting theorem; Bakry-Émery Ricci curvature
UR - http://eudml.org/doc/10404
ER -

References

top
  1. D. Bakry, Michel Émery, Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84 1123 (1985), 177-206, Springer, Berlin Zbl0561.60080MR889476
  2. Dominique Bakry, L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on probability theory (Saint-Flour, 1992) 1581 (1994), 1-114, Springer, Berlin Zbl0856.47026MR1307413
  3. Dominique Bakry, Zhongmin Qian, Volume comparison theorems without Jacobi fields, Current trends in potential theory 4 (2005), 115-122, Theta, Bucharest Zbl1212.58019MR2243959
  4. Arthur L. Besse, Einstein manifolds, 10 (1987), Springer-Verlag, Berlin Zbl0613.53001MR867684
  5. E. Calabi, An extension of E. Hopf’s maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958), 45-56 Zbl0079.11801MR92069
  6. Jeff Cheeger, Detlef Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971/72), 119-128 Zbl0223.53033MR303460
  7. Jost Eschenburg, Ernst Heintze, An elementary proof of the Cheeger-Gromoll splitting theorem, Ann. Global Anal. Geom. 2 (1984), 141-151 Zbl0548.53041MR777905
  8. M. Fernández-López, E. García-Río, A remark on compact Ricci solitons, Math. Ann. 340 (2008), 893-896 Zbl1132.53023MR2372742
  9. David Gilbarg, Neil S. Trudinger, Elliptic partial differential equations of second order, 224 (1983), Springer-Verlag, Berlin Zbl0562.35001MR737190
  10. Mikhael Gromov, Structures métriques pour les variétés riemanniennes, 1 (1981), CEDIC, Paris Zbl0509.53034MR682063
  11. Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, 152 (1999), Birkhäuser Boston Inc., Boston, MA Zbl0953.53002MR1699320
  12. Xiang-Dong Li, Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. (9) 84 (2005), 1295-1361 Zbl1082.58036MR2170766
  13. Xue-Mei Li, On extensions of Myers’ theorem, Bull. London Math. Soc. 27 (1995), 392-396 Zbl0835.60056MR1335292
  14. André Lichnerowicz, Variétés riemanniennes à tenseur C non négatif, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A650-A653 Zbl0208.50003MR268812
  15. John Lott, Some geometric properties of the Bakry-Émery-Ricci tensor, Comment. Math. Helv. 78 (2003), 865-883 Zbl1038.53041MR2016700
  16. G. Perelman, The entropy forumla for the Ricci flow and its geometric applications Zbl1130.53001
  17. Zhongmin Qian, Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser. (2) 48 (1997), 235-242 Zbl0902.53032MR1458581
  18. R. Schoen, S.-T. Yau, Lectures on differential geometry, (1994), International Press, Cambridge, MA Zbl0830.53001MR1333601
  19. Guofang Wei, William C. Wylie, Comparison Geometry for the Bakry-Émery Ricci Tensor Zbl1189.53036
  20. William Wylie, Complete shrinking Ricci solitons have finite fundamental group, Proc. Amer. Math. Soc. 136 (2008), 1803-1806 Zbl1152.53057MR2373611
  21. Shunhui Zhu, The comparison geometry of Ricci curvature, Comparison geometry (Berkeley, CA, 1993–94) 30 (1997), 221-262, Cambridge Univ. Press, Cambridge Zbl0896.53036MR1452876

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.