Conformal Killing graphs in foliated Riemannian spaces with density: rigidity and stability
Marco L. A. Velásquez; André F. A. Ramalho; Henrique F. de Lima; Márcio S. Santos; Arlandson M. S. Oliveira
Commentationes Mathematicae Universitatis Carolinae (2021)
- Issue: 2, page 175-200
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topVelásquez, Marco L. A., et al. "Conformal Killing graphs in foliated Riemannian spaces with density: rigidity and stability." Commentationes Mathematicae Universitatis Carolinae (2021): 175-200. <http://eudml.org/doc/297769>.
@article{Velásquez2021,
abstract = {In this paper we investigate the geometry of conformal Killing graphs in a Riemannian manifold $\overline\{M\}_f^\{ n+1\}$ endowed with a weight function $f$ and having a closed conformal Killing vector field $V$ with conformal factor $\psi _V$, that is, graphs constructed through the flow generated by $V$ and which are defined over an integral leaf of the foliation $V^\{\perp \}$ orthogonal to $V$. For such graphs, we establish some rigidity results under appropriate constraints on the $f$-mean curvature. Afterwards, we obtain some stability results for $f$-minimal conformal Killing graphs of $ \overline\{M\}_f^\{ n+1\}$ according to the behavior of $ \psi _V$. Finally, related to conformal Killing graphs immersed in $\overline\{M\}_f^\{n+1\}$ with constant $f$-mean curvature, we study the strong stability.},
author = {Velásquez, Marco L. A., Ramalho, André F. A., de Lima, Henrique F., Santos, Márcio S., Oliveira, Arlandson M. S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {weighted Riemannian manifold; conformal Killing graph; $f$-mean curvature; Bakry–Émery–Ricci tensor; strong $f$-stability},
language = {eng},
number = {2},
pages = {175-200},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Conformal Killing graphs in foliated Riemannian spaces with density: rigidity and stability},
url = {http://eudml.org/doc/297769},
year = {2021},
}
TY - JOUR
AU - Velásquez, Marco L. A.
AU - Ramalho, André F. A.
AU - de Lima, Henrique F.
AU - Santos, Márcio S.
AU - Oliveira, Arlandson M. S.
TI - Conformal Killing graphs in foliated Riemannian spaces with density: rigidity and stability
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 2
SP - 175
EP - 200
AB - In this paper we investigate the geometry of conformal Killing graphs in a Riemannian manifold $\overline{M}_f^{ n+1}$ endowed with a weight function $f$ and having a closed conformal Killing vector field $V$ with conformal factor $\psi _V$, that is, graphs constructed through the flow generated by $V$ and which are defined over an integral leaf of the foliation $V^{\perp }$ orthogonal to $V$. For such graphs, we establish some rigidity results under appropriate constraints on the $f$-mean curvature. Afterwards, we obtain some stability results for $f$-minimal conformal Killing graphs of $ \overline{M}_f^{ n+1}$ according to the behavior of $ \psi _V$. Finally, related to conformal Killing graphs immersed in $\overline{M}_f^{n+1}$ with constant $f$-mean curvature, we study the strong stability.
LA - eng
KW - weighted Riemannian manifold; conformal Killing graph; $f$-mean curvature; Bakry–Émery–Ricci tensor; strong $f$-stability
UR - http://eudml.org/doc/297769
ER -
References
top- Aledo J. A., Rubio R. M., 10.1007/s12220-015-9673-8, J. Geom. Anal. 27 (2017), no. 1, 65–78. MR3606544DOI10.1007/s12220-015-9673-8
- Alexandrov A. D., Uniqueness theorems for surfaces in the large I, Vestnik Leiningrad Univ. 11 (1956), no. 19, 5–17 (Russian). MR0086338
- Alexandrov A. D., 10.1007/BF02413056, Ann. Mat. Pura Appl. 58 (1962), no. 4, 303–315. MR0143162DOI10.1007/BF02413056
- Alías L. J., Dajczer M., Ripoll J. R., 10.1007/s10455-006-9045-5, Ann. Global Anal. Geom. 31 (2007), no. 4, 363–373. MR2325221DOI10.1007/s10455-006-9045-5
- Alías L. J., de Lira J. H. S., Malacarne J. M., 10.1017/S1474748006000077, J. Inst. Math. Jussieu 5 (2006), no. 4, 527–562. Zbl1118.53038MR2261223DOI10.1017/S1474748006000077
- Bakry D., Émery M., Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, pages 177–206 (French). MR0889476
- Barbosa J. L. M., do Carmo M., Eschenburg J., 10.1007/BF01161634, Math. Z. 197 (1988), no. 1, 123–138. MR0917854DOI10.1007/BF01161634
- Batista M., Cavalcante M. P., Pyo J., 10.1016/j.jmaa.2014.04.074, J. Math. Anal. Appl. 419 (2014), no. 1, 617–626. MR3217170DOI10.1016/j.jmaa.2014.04.074
- Bernstein S., 10.24033/asens.621, Ann. Sci. École Norm. Sup. 27 (1910), no. 3, 233–256 (French). MR1509123DOI10.24033/asens.621
- Caminha A., 10.1007/s00574-011-0015-6, Bull. Braz. Math. Soc. (N.S.) 42 (2011), no. 2, 277–300. Zbl1242.53068MR2833803DOI10.1007/s00574-011-0015-6
- Caminha A., de Lima H. F., 10.36045/bbms/1235574194, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 1, 91–105. MR2498961DOI10.36045/bbms/1235574194
- Cañete A., Rosales C., 10.1007/s00526-013-0699-0, Cal. Var. Partial Differential Equations 51 (2014), no. 3–4, 887–913. MR3268875DOI10.1007/s00526-013-0699-0
- Castro K., Rosales C., 10.1016/j.geomphys.2014.01.013, J. Geom. Phys. 79 (2014), 14–28. MR3176286DOI10.1016/j.geomphys.2014.01.013
- Cavalcante M. P., de Lima H. F., Santos M. S., 10.1007/s10231-014-0464-9, Ann. Mat. Pura Appl. (4) 195 (2016), no. 2, 309–322. MR3476675DOI10.1007/s10231-014-0464-9
- Dajczer M., de Lira J. H., 10.1007/s12220-011-9214-z, J. Geom. Anal. 22 (2012), no. 3, 780–799. MR2927678DOI10.1007/s12220-011-9214-z
- Dajczer M., Hinojosa P., de Lira J. H., 10.1007/s00526-008-0163-8, Calc. Var. Partial Differential Equations 33 (2008), no. 2, 231–248. Zbl1152.53046MR2413108DOI10.1007/s00526-008-0163-8
- de Lima H. F., de Lima J. R., Velásquez M. A. L., On the nullity of conformal Killing graphs in foliated Riemannian spaces, Aequationes Math. 87 (2014), no. 3, 285–299. MR3266117
- de Lima H. F., de Lima J. R., Velásquez M. A. L., 10.1007/s12220-013-9418-5, J. Geom. Anal. 25 (2015), no. 1, 171–188. MR3299274DOI10.1007/s12220-013-9418-5
- de Lima H. F., Oliveira A. M., Velásquez M. A. L., 10.1007/s12220-017-9761-z, J. Geom. Anal. 27 (2017), no. 3, 2278–2301. MR3667431DOI10.1007/s12220-017-9761-z
- Fang F., Li X.-D., Zhang Z., 10.5802/aif.2440, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 563–573. MR2521428DOI10.5802/aif.2440
- Hieu D. T., Nam T. L., 10.1016/j.geomphys.2014.03.011, J. Geom. Phys. 81 (2014), 87–91. MR3194217DOI10.1016/j.geomphys.2014.03.011
- Impera D., de Lira J. H., Pigola S., Setti A. G., 10.1007/s12220-017-9938-5, J. Geom. Anal. 28 (2018), no. 3, 2857–2885. MR3833821DOI10.1007/s12220-017-9938-5
- Impera D., Rimoldi M., 10.1007/s10711-014-9999-6, Geom. Dedicata 178 (2015), 21–47. MR3397480DOI10.1007/s10711-014-9999-6
- Jellett J. J., Sur la surface dont la courbure moyenne est constante, J. Math. Pures Appl. 18 (1853), 163–167 (French).
- Lichnerowicz A., Variétés Riemanniennes à tenseur C non négatif, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A650–A653 (French). MR0268812
- Lichnerowicz A., Variétés Kählériennes à première classe de Chern non negative et variétés Riemanniennes à courbure de Ricci généralisée non negative, J. Differential Geometry 6 (1971/72), 47–94 (French). MR0300228
- Liebmann H., Eine neue Eigenschaft der Kugel, Nachr. Kg. Ges. Wiss. Götingen, Math. Phys. Kl. (1899), 44–55 (German).
- McGonagle M., Ross J., 10.1007/s10711-015-0057-9, Geom. Dedicata 178 (2015), 277–296. MR3397495DOI10.1007/s10711-015-0057-9
- Montiel S., 10.1512/iumj.1999.48.1562, Indiana Univ. Math. J. 48 (1999), no. 2, 711–748. MR1722814DOI10.1512/iumj.1999.48.1562
- O'Neill B., Semi-Riemannian Geometry, With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983. MR0719023
- Pan T. K., 10.1090/S0002-9939-1963-0157324-2, Proc. Amer. Math. Soc. 14 (1963), 653–657. MR0157324DOI10.1090/S0002-9939-1963-0157324-2
- Rosales C., Ca nete A., Bayle V., Morgan F., 10.1007/s00526-007-0104-y, Calc. Var. Partial Differential Equations 31 (2008), no. 1, 27–46. MR2342613DOI10.1007/s00526-007-0104-y
- Wei G., Wylie W., Comparison geometry for the Bakry–Émery Ricci tensor, J. Differential Geom. 83 (2009), no. 2, 377–405. MR2577473
- Yau S. T., 10.1512/iumj.1976.25.25051, Indiana Univ. Math. J. 25 (1976), no. 7, 659–670. MR0417452DOI10.1512/iumj.1976.25.25051
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.