Conformal Killing graphs in foliated Riemannian spaces with density: rigidity and stability

Marco L. A. Velásquez; André F. A. Ramalho; Henrique F. de Lima; Márcio S. Santos; Arlandson M. S. Oliveira

Commentationes Mathematicae Universitatis Carolinae (2021)

  • Issue: 2, page 175-200
  • ISSN: 0010-2628

Abstract

top
In this paper we investigate the geometry of conformal Killing graphs in a Riemannian manifold M ¯ f n + 1 endowed with a weight function f and having a closed conformal Killing vector field V with conformal factor ψ V , that is, graphs constructed through the flow generated by V and which are defined over an integral leaf of the foliation V orthogonal to V . For such graphs, we establish some rigidity results under appropriate constraints on the f -mean curvature. Afterwards, we obtain some stability results for f -minimal conformal Killing graphs of M ¯ f n + 1 according to the behavior of ψ V . Finally, related to conformal Killing graphs immersed in M ¯ f n + 1 with constant f -mean curvature, we study the strong stability.

How to cite

top

Velásquez, Marco L. A., et al. "Conformal Killing graphs in foliated Riemannian spaces with density: rigidity and stability." Commentationes Mathematicae Universitatis Carolinae (2021): 175-200. <http://eudml.org/doc/297769>.

@article{Velásquez2021,
abstract = {In this paper we investigate the geometry of conformal Killing graphs in a Riemannian manifold $\overline\{M\}_f^\{ n+1\}$ endowed with a weight function $f$ and having a closed conformal Killing vector field $V$ with conformal factor $\psi _V$, that is, graphs constructed through the flow generated by $V$ and which are defined over an integral leaf of the foliation $V^\{\perp \}$ orthogonal to $V$. For such graphs, we establish some rigidity results under appropriate constraints on the $f$-mean curvature. Afterwards, we obtain some stability results for $f$-minimal conformal Killing graphs of $ \overline\{M\}_f^\{ n+1\}$ according to the behavior of $ \psi _V$. Finally, related to conformal Killing graphs immersed in $\overline\{M\}_f^\{n+1\}$ with constant $f$-mean curvature, we study the strong stability.},
author = {Velásquez, Marco L. A., Ramalho, André F. A., de Lima, Henrique F., Santos, Márcio S., Oliveira, Arlandson M. S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {weighted Riemannian manifold; conformal Killing graph; $f$-mean curvature; Bakry–Émery–Ricci tensor; strong $f$-stability},
language = {eng},
number = {2},
pages = {175-200},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Conformal Killing graphs in foliated Riemannian spaces with density: rigidity and stability},
url = {http://eudml.org/doc/297769},
year = {2021},
}

TY - JOUR
AU - Velásquez, Marco L. A.
AU - Ramalho, André F. A.
AU - de Lima, Henrique F.
AU - Santos, Márcio S.
AU - Oliveira, Arlandson M. S.
TI - Conformal Killing graphs in foliated Riemannian spaces with density: rigidity and stability
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 2
SP - 175
EP - 200
AB - In this paper we investigate the geometry of conformal Killing graphs in a Riemannian manifold $\overline{M}_f^{ n+1}$ endowed with a weight function $f$ and having a closed conformal Killing vector field $V$ with conformal factor $\psi _V$, that is, graphs constructed through the flow generated by $V$ and which are defined over an integral leaf of the foliation $V^{\perp }$ orthogonal to $V$. For such graphs, we establish some rigidity results under appropriate constraints on the $f$-mean curvature. Afterwards, we obtain some stability results for $f$-minimal conformal Killing graphs of $ \overline{M}_f^{ n+1}$ according to the behavior of $ \psi _V$. Finally, related to conformal Killing graphs immersed in $\overline{M}_f^{n+1}$ with constant $f$-mean curvature, we study the strong stability.
LA - eng
KW - weighted Riemannian manifold; conformal Killing graph; $f$-mean curvature; Bakry–Émery–Ricci tensor; strong $f$-stability
UR - http://eudml.org/doc/297769
ER -

References

top
  1. Aledo J. A., Rubio R. M., 10.1007/s12220-015-9673-8, J. Geom. Anal. 27 (2017), no. 1, 65–78. MR3606544DOI10.1007/s12220-015-9673-8
  2. Alexandrov A. D., Uniqueness theorems for surfaces in the large I, Vestnik Leiningrad Univ. 11 (1956), no. 19, 5–17 (Russian). MR0086338
  3. Alexandrov A. D., 10.1007/BF02413056, Ann. Mat. Pura Appl. 58 (1962), no. 4, 303–315. MR0143162DOI10.1007/BF02413056
  4. Alías L. J., Dajczer M., Ripoll J. R., 10.1007/s10455-006-9045-5, Ann. Global Anal. Geom. 31 (2007), no. 4, 363–373. MR2325221DOI10.1007/s10455-006-9045-5
  5. Alías L. J., de Lira J. H. S., Malacarne J. M., 10.1017/S1474748006000077, J. Inst. Math. Jussieu 5 (2006), no. 4, 527–562. Zbl1118.53038MR2261223DOI10.1017/S1474748006000077
  6. Bakry D., Émery M., Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, 1985, pages 177–206 (French). MR0889476
  7. Barbosa J. L. M., do Carmo M., Eschenburg J., 10.1007/BF01161634, Math. Z. 197 (1988), no. 1, 123–138. MR0917854DOI10.1007/BF01161634
  8. Batista M., Cavalcante M. P., Pyo J., 10.1016/j.jmaa.2014.04.074, J. Math. Anal. Appl. 419 (2014), no. 1, 617–626. MR3217170DOI10.1016/j.jmaa.2014.04.074
  9. Bernstein S., 10.24033/asens.621, Ann. Sci. École Norm. Sup. 27 (1910), no. 3, 233–256 (French). MR1509123DOI10.24033/asens.621
  10. Caminha A., 10.1007/s00574-011-0015-6, Bull. Braz. Math. Soc. (N.S.) 42 (2011), no. 2, 277–300. Zbl1242.53068MR2833803DOI10.1007/s00574-011-0015-6
  11. Caminha A., de Lima H. F., 10.36045/bbms/1235574194, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 1, 91–105. MR2498961DOI10.36045/bbms/1235574194
  12. Cañete A., Rosales C., 10.1007/s00526-013-0699-0, Cal. Var. Partial Differential Equations 51 (2014), no. 3–4, 887–913. MR3268875DOI10.1007/s00526-013-0699-0
  13. Castro K., Rosales C., 10.1016/j.geomphys.2014.01.013, J. Geom. Phys. 79 (2014), 14–28. MR3176286DOI10.1016/j.geomphys.2014.01.013
  14. Cavalcante M. P., de Lima H. F., Santos M. S., 10.1007/s10231-014-0464-9, Ann. Mat. Pura Appl. (4) 195 (2016), no. 2, 309–322. MR3476675DOI10.1007/s10231-014-0464-9
  15. Dajczer M., de Lira J. H., 10.1007/s12220-011-9214-z, J. Geom. Anal. 22 (2012), no. 3, 780–799. MR2927678DOI10.1007/s12220-011-9214-z
  16. Dajczer M., Hinojosa P., de Lira J. H., 10.1007/s00526-008-0163-8, Calc. Var. Partial Differential Equations 33 (2008), no. 2, 231–248. Zbl1152.53046MR2413108DOI10.1007/s00526-008-0163-8
  17. de Lima H. F., de Lima J. R., Velásquez M. A. L., On the nullity of conformal Killing graphs in foliated Riemannian spaces, Aequationes Math. 87 (2014), no. 3, 285–299. MR3266117
  18. de Lima H. F., de Lima J. R., Velásquez M. A. L., 10.1007/s12220-013-9418-5, J. Geom. Anal. 25 (2015), no. 1, 171–188. MR3299274DOI10.1007/s12220-013-9418-5
  19. de Lima H. F., Oliveira A. M., Velásquez M. A. L., 10.1007/s12220-017-9761-z, J. Geom. Anal. 27 (2017), no. 3, 2278–2301. MR3667431DOI10.1007/s12220-017-9761-z
  20. Fang F., Li X.-D., Zhang Z., 10.5802/aif.2440, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 563–573. MR2521428DOI10.5802/aif.2440
  21. Hieu D. T., Nam T. L., 10.1016/j.geomphys.2014.03.011, J. Geom. Phys. 81 (2014), 87–91. MR3194217DOI10.1016/j.geomphys.2014.03.011
  22. Impera D., de Lira J. H., Pigola S., Setti A. G., 10.1007/s12220-017-9938-5, J. Geom. Anal. 28 (2018), no. 3, 2857–2885. MR3833821DOI10.1007/s12220-017-9938-5
  23. Impera D., Rimoldi M., 10.1007/s10711-014-9999-6, Geom. Dedicata 178 (2015), 21–47. MR3397480DOI10.1007/s10711-014-9999-6
  24. Jellett J. J., Sur la surface dont la courbure moyenne est constante, J. Math. Pures Appl. 18 (1853), 163–167 (French). 
  25. Lichnerowicz A., Variétés Riemanniennes à tenseur C non négatif, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A650–A653 (French). MR0268812
  26. Lichnerowicz A., Variétés Kählériennes à première classe de Chern non negative et variétés Riemanniennes à courbure de Ricci généralisée non negative, J. Differential Geometry 6 (1971/72), 47–94 (French). MR0300228
  27. Liebmann H., Eine neue Eigenschaft der Kugel, Nachr. Kg. Ges. Wiss. Götingen, Math. Phys. Kl. (1899), 44–55 (German). 
  28. McGonagle M., Ross J., 10.1007/s10711-015-0057-9, Geom. Dedicata 178 (2015), 277–296. MR3397495DOI10.1007/s10711-015-0057-9
  29. Montiel S., 10.1512/iumj.1999.48.1562, Indiana Univ. Math. J. 48 (1999), no. 2, 711–748. MR1722814DOI10.1512/iumj.1999.48.1562
  30. O'Neill B., Semi-Riemannian Geometry, With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983. MR0719023
  31. Pan T. K., 10.1090/S0002-9939-1963-0157324-2, Proc. Amer. Math. Soc. 14 (1963), 653–657. MR0157324DOI10.1090/S0002-9939-1963-0157324-2
  32. Rosales C., Ca nete A., Bayle V., Morgan F., 10.1007/s00526-007-0104-y, Calc. Var. Partial Differential Equations 31 (2008), no. 1, 27–46. MR2342613DOI10.1007/s00526-007-0104-y
  33. Wei G., Wylie W., Comparison geometry for the Bakry–Émery Ricci tensor, J. Differential Geom. 83 (2009), no. 2, 377–405. MR2577473
  34. Yau S. T., 10.1512/iumj.1976.25.25051, Indiana Univ. Math. J. 25 (1976), no. 7, 659–670. MR0417452DOI10.1512/iumj.1976.25.25051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.