Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables
Stephen S. Kudla; John J. Millson
Publications Mathématiques de l'IHÉS (1990)
- Volume: 71, page 121-172
- ISSN: 0073-8301
Access Full Article
topHow to cite
topKudla, Stephen S., and Millson, John J.. "Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables." Publications Mathématiques de l'IHÉS 71 (1990): 121-172. <http://eudml.org/doc/104064>.
@article{Kudla1990,
author = {Kudla, Stephen S., Millson, John J.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {theta correspondence; holomorphic Siegel modular forms; holomorphic Hermitian modular forms; Fourier coefficients; lift},
language = {eng},
pages = {121-172},
publisher = {Institut des Hautes Études Scientifiques},
title = {Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables},
url = {http://eudml.org/doc/104064},
volume = {71},
year = {1990},
}
TY - JOUR
AU - Kudla, Stephen S.
AU - Millson, John J.
TI - Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables
JO - Publications Mathématiques de l'IHÉS
PY - 1990
PB - Institut des Hautes Études Scientifiques
VL - 71
SP - 121
EP - 172
LA - eng
KW - theta correspondence; holomorphic Siegel modular forms; holomorphic Hermitian modular forms; Fourier coefficients; lift
UR - http://eudml.org/doc/104064
ER -
References
top- [1] A. ASH, Non-square integrable cohomology of arithmetic groups, Duke Math. J., 47 (1980), 435-449. Zbl0446.20023MR82m:22013
- [2] A. BOREL, Introduction aux groupes arithmétiques, Publications de l'Institut de Mathématiques de l'Université de Strasbourg XV, Hermann, 1969. Zbl0186.33202MR39 #5577
- [3] A. BOREL, Stable real cohomology of arithmetic groups II, in Collected Papers III, Springer-Verlag, 1983, 650-684.
- [4] A. BOREL and N. WALLACH, Continuous cohomology, discrete groups and representations of reductive groups, Ann. of Math. Stud., vol. 94, Princeton Univ. Press, Princeton, N. J., 1980. Zbl0443.22010MR83c:22018
- [5] J. COGDELL, The Weil representation and cycles on Picard modular surfaces, Preprint, 1982.
- [6] M. GAFFNEY, A special Stokes theorem for complete Riemannian manifolds, Ann. of Math. (2) 60 (1954), 140-145. Zbl0055.40301MR15,986d
- [7] P. GRIFFITHS and J. HARRIS, Principles of algebraic geometry, Wiley, 1978. Zbl0408.14001MR80b:14001
- [8] F. HIRZEBRUCH and D. ZAGIER, Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus, Invent. Math., 36 (1976), 57-113. Zbl0332.14009MR56 #11909
- [9] S. KUDLA and J. MILLSON, Harmonic differentials and closed geodesics on a Riemann surface, Invent. Math., 54 (1979), 193-211. Zbl0429.30038MR81a:53041
- [10] S. KUDLA and J. MILLSON, The Poincaré dual of a geodesic algebraic curve in a quotient of the 2-ball, Canad. J. Math., 33 (1979), 485-499. Zbl0506.32013MR82f:32043
- [11] S. KUDLA and J. MILLSON, Geodesic cycles and the Weil representation, I. Quotients of hyperbolic space and Siegel modular forms, Compos. Math., 45 (1982), 207-217. Zbl0495.10016MR83m:10037
- [12] S. KUDLA and J. MILLSON, The theta correspondence and harmonic forms, I, Math. Ann., 274 (1986), 353-378. Zbl0594.10020MR88b:11023
- [13] S. KUDLA and J. MILLSON, The theta correspondence and harmonic forms, II, Math. Ann., 277 (1987), 267-314. Zbl0618.10022MR89b:11041
- [14] S. KUDLA and J. MILLSON, Tubes, cohomology with growth conditions and an application to the theta correspondence, Canad. J. Math., 40 (1988), 1-37. Zbl0652.10021MR90k:11054
- [15] G. LION and M. VERGNE, The Weil representation, Maslovindex and theta series, Progr. Math., vol. 6, Birkhauser, 1980. Zbl0444.22005MR81j:58075
- [16] J. MILLSON, Cycles and harmonic forms on locally symmetric spaces, Canad. Math. Bull., 28 (1985), 3-38. Zbl0575.10022MR87b:11038
- [17] J. MILLSON, Intersection numbers of cycles and Fourier coefficients of holomorphic modular forms in several complex variables, Proceedings of Symposia in Pure Math., 41 (1989), Part 2, 129-142. Zbl0681.32024MR90m:32052
- [18] J. MILLSON, A regularized theta integral and the cohomology of the boundary, in preparation.
- [19] J. MILLSON and M. S. RAGHUNATHAN, Geometric construction of cohomology for arithmetic groups, I, in Geometry and Analysis (Papers dedicated to the Memory of V. K. Patodi), The Indian Academy of Sciences, 1979, 103-123. Zbl0514.22007
- [20] Seminaire H. Cartan, 10, Fonctions Automorphes, E.N.S., 1957-1958.
- [21] T. SHINTANI, On construction of holomorphic cusp forms of half integral weight, Nagoya Math. J., 58 (1975), 83-126. Zbl0316.10016MR52 #10603
- [22] Y. L. TONG and S. P. WANG, Harmonic forms dual to geodesic cycles in quotients of SU(p, q), Math. Ann., 258 (1982), 298-318. Zbl0466.58004MR84m:32046
- [23] Y. L. TONG and S. P. WANG, Theta functions defined by geodesic cycles in quotients of SU(p, 1), Invent. Math., 71 (1983), 467-499. Zbl0506.10024MR85c:11046
- [24] Y. L. TONG and S. P. WANG, Correspondence of Hermitian modular forms to cycles associated to SU(p, 2), J. Differential Geom., 18 (1983), 163-207. Zbl0559.10027MR85d:11047
- [25] Y. L. TONG and S. P. WANG, Period integrals in non-compact quotients of SU(p, 1), Duke Math. J., 52 (1985), 649-688. Zbl0582.10018MR87c:32038
- [26] S. P. WANG, Correspondence of modular forms to cycles associated to O(p, q), J. Differential Geom., 22 (1985), 151-223. Zbl0594.10021MR88a:32040
- [27] A. WEIL, Sur certains groupes d'opérateurs unitaires, Acta. Math., 111 (1964), 143-211. Zbl0203.03305MR29 #2324
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.