Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables

Stephen S. Kudla; John J. Millson

Publications Mathématiques de l'IHÉS (1990)

  • Volume: 71, page 121-172
  • ISSN: 0073-8301

How to cite

top

Kudla, Stephen S., and Millson, John J.. "Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables." Publications Mathématiques de l'IHÉS 71 (1990): 121-172. <http://eudml.org/doc/104064>.

@article{Kudla1990,
author = {Kudla, Stephen S., Millson, John J.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {theta correspondence; holomorphic Siegel modular forms; holomorphic Hermitian modular forms; Fourier coefficients; lift},
language = {eng},
pages = {121-172},
publisher = {Institut des Hautes Études Scientifiques},
title = {Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables},
url = {http://eudml.org/doc/104064},
volume = {71},
year = {1990},
}

TY - JOUR
AU - Kudla, Stephen S.
AU - Millson, John J.
TI - Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables
JO - Publications Mathématiques de l'IHÉS
PY - 1990
PB - Institut des Hautes Études Scientifiques
VL - 71
SP - 121
EP - 172
LA - eng
KW - theta correspondence; holomorphic Siegel modular forms; holomorphic Hermitian modular forms; Fourier coefficients; lift
UR - http://eudml.org/doc/104064
ER -

References

top
  1. [1] A. ASH, Non-square integrable cohomology of arithmetic groups, Duke Math. J., 47 (1980), 435-449. Zbl0446.20023MR82m:22013
  2. [2] A. BOREL, Introduction aux groupes arithmétiques, Publications de l'Institut de Mathématiques de l'Université de Strasbourg XV, Hermann, 1969. Zbl0186.33202MR39 #5577
  3. [3] A. BOREL, Stable real cohomology of arithmetic groups II, in Collected Papers III, Springer-Verlag, 1983, 650-684. 
  4. [4] A. BOREL and N. WALLACH, Continuous cohomology, discrete groups and representations of reductive groups, Ann. of Math. Stud., vol. 94, Princeton Univ. Press, Princeton, N. J., 1980. Zbl0443.22010MR83c:22018
  5. [5] J. COGDELL, The Weil representation and cycles on Picard modular surfaces, Preprint, 1982. 
  6. [6] M. GAFFNEY, A special Stokes theorem for complete Riemannian manifolds, Ann. of Math. (2) 60 (1954), 140-145. Zbl0055.40301MR15,986d
  7. [7] P. GRIFFITHS and J. HARRIS, Principles of algebraic geometry, Wiley, 1978. Zbl0408.14001MR80b:14001
  8. [8] F. HIRZEBRUCH and D. ZAGIER, Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus, Invent. Math., 36 (1976), 57-113. Zbl0332.14009MR56 #11909
  9. [9] S. KUDLA and J. MILLSON, Harmonic differentials and closed geodesics on a Riemann surface, Invent. Math., 54 (1979), 193-211. Zbl0429.30038MR81a:53041
  10. [10] S. KUDLA and J. MILLSON, The Poincaré dual of a geodesic algebraic curve in a quotient of the 2-ball, Canad. J. Math., 33 (1979), 485-499. Zbl0506.32013MR82f:32043
  11. [11] S. KUDLA and J. MILLSON, Geodesic cycles and the Weil representation, I. Quotients of hyperbolic space and Siegel modular forms, Compos. Math., 45 (1982), 207-217. Zbl0495.10016MR83m:10037
  12. [12] S. KUDLA and J. MILLSON, The theta correspondence and harmonic forms, I, Math. Ann., 274 (1986), 353-378. Zbl0594.10020MR88b:11023
  13. [13] S. KUDLA and J. MILLSON, The theta correspondence and harmonic forms, II, Math. Ann., 277 (1987), 267-314. Zbl0618.10022MR89b:11041
  14. [14] S. KUDLA and J. MILLSON, Tubes, cohomology with growth conditions and an application to the theta correspondence, Canad. J. Math., 40 (1988), 1-37. Zbl0652.10021MR90k:11054
  15. [15] G. LION and M. VERGNE, The Weil representation, Maslovindex and theta series, Progr. Math., vol. 6, Birkhauser, 1980. Zbl0444.22005MR81j:58075
  16. [16] J. MILLSON, Cycles and harmonic forms on locally symmetric spaces, Canad. Math. Bull., 28 (1985), 3-38. Zbl0575.10022MR87b:11038
  17. [17] J. MILLSON, Intersection numbers of cycles and Fourier coefficients of holomorphic modular forms in several complex variables, Proceedings of Symposia in Pure Math., 41 (1989), Part 2, 129-142. Zbl0681.32024MR90m:32052
  18. [18] J. MILLSON, A regularized theta integral and the cohomology of the boundary, in preparation. 
  19. [19] J. MILLSON and M. S. RAGHUNATHAN, Geometric construction of cohomology for arithmetic groups, I, in Geometry and Analysis (Papers dedicated to the Memory of V. K. Patodi), The Indian Academy of Sciences, 1979, 103-123. Zbl0514.22007
  20. [20] Seminaire H. Cartan, 10, Fonctions Automorphes, E.N.S., 1957-1958. 
  21. [21] T. SHINTANI, On construction of holomorphic cusp forms of half integral weight, Nagoya Math. J., 58 (1975), 83-126. Zbl0316.10016MR52 #10603
  22. [22] Y. L. TONG and S. P. WANG, Harmonic forms dual to geodesic cycles in quotients of SU(p, q), Math. Ann., 258 (1982), 298-318. Zbl0466.58004MR84m:32046
  23. [23] Y. L. TONG and S. P. WANG, Theta functions defined by geodesic cycles in quotients of SU(p, 1), Invent. Math., 71 (1983), 467-499. Zbl0506.10024MR85c:11046
  24. [24] Y. L. TONG and S. P. WANG, Correspondence of Hermitian modular forms to cycles associated to SU(p, 2), J. Differential Geom., 18 (1983), 163-207. Zbl0559.10027MR85d:11047
  25. [25] Y. L. TONG and S. P. WANG, Period integrals in non-compact quotients of SU(p, 1), Duke Math. J., 52 (1985), 649-688. Zbl0582.10018MR87c:32038
  26. [26] S. P. WANG, Correspondence of modular forms to cycles associated to O(p, q), J. Differential Geom., 22 (1985), 151-223. Zbl0594.10021MR88a:32040
  27. [27] A. WEIL, Sur certains groupes d'opérateurs unitaires, Acta. Math., 111 (1964), 143-211. Zbl0203.03305MR29 #2324

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.