Derivatives of Eisenstein series and generating functions for arithmetic cycles

Stephen S. Kudla

Séminaire Bourbaki (1999-2000)

  • Volume: 42, page 341-368
  • ISSN: 0303-1179

How to cite

top

Kudla, Stephen S.. "Derivatives of Eisenstein series and generating functions for arithmetic cycles." Séminaire Bourbaki 42 (1999-2000): 341-368. <http://eudml.org/doc/110279>.

@article{Kudla1999-2000,
author = {Kudla, Stephen S.},
journal = {Séminaire Bourbaki},
keywords = {Eisenstein series; Shimura curves; height pairings; arithmetic cycles},
language = {eng},
pages = {341-368},
publisher = {Société Mathématique de France},
title = {Derivatives of Eisenstein series and generating functions for arithmetic cycles},
url = {http://eudml.org/doc/110279},
volume = {42},
year = {1999-2000},
}

TY - JOUR
AU - Kudla, Stephen S.
TI - Derivatives of Eisenstein series and generating functions for arithmetic cycles
JO - Séminaire Bourbaki
PY - 1999-2000
PB - Société Mathématique de France
VL - 42
SP - 341
EP - 368
LA - eng
KW - Eisenstein series; Shimura curves; height pairings; arithmetic cycles
UR - http://eudml.org/doc/110279
ER -

References

top
  1. [1] R.E. Borcherds, The Gross-Kohnen-Zagier Theorem in higher dimensions, Duke Math. J.97 (1999), pp. 219-233. Zbl0967.11022MR1682249
  2. [2] J.-F. Boutot and H. Carayol, Uniformisation p-adiques des courbes de Shimura, Astérisque196-197 (1991), 45-158. Zbl0781.14010MR1141456
  3. [3] P. Garrett, Decomposition of Eisenstein series: Rankin triple products, Annals of Math.125 (1987), 209-235. Zbl0625.10020MR881269
  4. [4] H. Gillet and C. Soulé, Arithmetic intersection theory, Jour of IHES, 72 (1990), 94-174. Zbl0741.14012MR1087394
  5. [5] B.H. Gross, On canonical and quasi-canonical liftings, Inventiones Math.84 (1986), 321-326. Zbl0597.14044MR833193
  6. [6] B.H. Gross and K. Keating, On the intersection of modular correspondences, Invent. Math.112 (1993), 225-245. Zbl0811.11026MR1213101
  7. [7] B.H. Gross and S. Kudla, Heights and the central critical values of triple product L-functions, Compositio Math., 81 (1992), 143-209. Zbl0807.11027MR1145805
  8. [8] B.H. Gross and D. Zagier, Heegner points and the derivatives of L-series, Inventiones math.84 (1986), 225-320. Zbl0608.14019MR833192
  9. [9] M. Harris and S. Kudla, The central critical value of a triple product L-function, Annals of Math.133 (1991), 605-672. Zbl0731.11031MR1109355
  10. [10] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962. Zbl0111.18101MR145455
  11. [11] F. Hirzebruch and D. Zagier, Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus, Inventiones Math.36 (1976), 57-113. Zbl0332.14009MR453649
  12. [12] Y. Kitaoka, A note on local densities of quadratic forms, Nagoya Math. J.92 (1983), 145-152. Zbl0523.10012MR726146
  13. [13] S. Kudla, Algebraic cycles on Shimura varieties of orthogonal type, Duke Math. J.86 (1997), 39-78. Zbl0879.11026MR1427845
  14. [14] S. Kudla, Central derivatives of Eisenstein series and height pairings, Annals of Math.146 (1997), 545-646. Zbl0990.11032MR1491448
  15. [15] S. Kudla and J. Millson, The theta correspondence and harmonic forms I, Math. Annalen, 274 (1986), 353-378. Zbl0594.10020MR842618
  16. [16] S. Kudla and J. Millson, The theta correspondence and harmonic forms II, Math. Annalen, 277 (1987), 267-314. Zbl0618.10022MR886423
  17. [17] S. Kudla and J. Millson, Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables, IHES71 (1990), 121-172. Zbl0722.11026MR1079646
  18. [18] S. Kudla and S. Rallis, Degenerate principal series and invariant distributions, Israel J. Math., 69 (1990), 25-45 Zbl0708.22005MR1046171
  19. [19] S. Kudla and S. Rallis, Ramified degenerate principal series representations for Sp(n), Israel J. Math., 78 (1992), 209-256. Zbl0787.22019MR1194967
  20. [20] S. Kudla and S. Rallis, A regularized Siegel-Weil formula: the first term identity, Annals of Math.140 (1994), 1-80. Zbl0818.11024MR1289491
  21. [21] S. Kudla and M. Rapoport, Cycles on Siegel 3-folds and derivatives of Eisenstein series, Ann. École Norm. Sup.33 (2000), 695-756. Zbl1045.11044MR1834500
  22. [22] S. Kudla and M. Rapoport, Arithmetic Hirzebruch-Zagier cycles, J. reine angew. Math.515 (1999), 155-244. Zbl1048.11048MR1717613
  23. [23] S. Kudla and M. Rapoport, Heights on Shimura curves and p-adic uniformization, Inventiones Math. (to appear) Zbl1009.11043
  24. [24] S. Kudla, M. Rapoport and T. Yang, On the derivative of an Eisenstein series of weight 1, Int. Math. Res. Notices No. 7 (1999), 347-385. Zbl1009.11032MR1683308
  25. [25] S. Kudla, M. Rapoport and T. Yang (in preparation). 
  26. [26] B. Moonen, Models of Shimura varieties in mixed characteristics, in Galois Representations in Arithmetic Algebraic Geometry, A. J. Scholl and R. L. Taylor. eds., London Math. Society Lecture Note Series254, Cambridge Univ. Press, 1998. Zbl0962.14017MR1696489
  27. [27] I.I. Piatetski-Shapiro and S. Rallis, Rankin triple L-functions, Compositio Math.64 (1987), 31-115. Zbl0637.10023MR911357
  28. [28] I. Satake, Algebraic Structures of Symmetric Domains, Publ. of the Math. Soc. of Japan, 14, Iwanami Shoten and Princeton Univ. Press, 1980. Zbl0483.32017MR591460
  29. [29] F. Sato and Y. Hironaka, Local densities of representations of quadratic forms over p-adic integers (the non-dyadic case), J. Number Theory83 (2000), 106- 136. Zbl0949.11023MR1767655
  30. [30] G. Shimura, Confluent hypergeometric functions on tube domains, Math. Annalen260 (1982), 269-302. Zbl0502.10013MR669297
  31. [31] H. Stamm, On the reduction of the Hilbert-Blumenthal-moduli scheme with Γ0(p)-level structure, Forum Math.9 (1997), 405-455. Zbl0916.14022
  32. [32] C. Soulé, D. Abramovich, J.-F. Burnol, and J. Kramer, Lectures on Arakelov Geometry, Cambridge Stud. Adv. Math., vol 33, Cambridge U. Press, 1992. Zbl0812.14015MR1208731
  33. [33] W.J. Sweet, The metaplectic case of the Weil-Siegel formula, thesis, Univ. of Maryland, 1990. 
  34. [34] T. Yang, An explicit formula for local densities of quadratic forms, J. Number Theory72 (1998), 309-356. Zbl0930.11021MR1651696

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.