Cycles on Siegel threefolds and derivatives of Eisenstein series

Stephen S. Kudla; Michael Rapoport

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 5, page 695-756
  • ISSN: 0012-9593

How to cite

top

Kudla, Stephen S., and Rapoport, Michael. "Cycles on Siegel threefolds and derivatives of Eisenstein series." Annales scientifiques de l'École Normale Supérieure 33.5 (2000): 695-756. <http://eudml.org/doc/82532>.

@article{Kudla2000,
author = {Kudla, Stephen S., Rapoport, Michael},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Siegel modular variety of genus two; algebraic cycles; special endomorphisms; intersection multiplicities of the cycles at isolated points; special values of derivatives of certain Eisenstein series; metaplectic group},
language = {eng},
number = {5},
pages = {695-756},
publisher = {Elsevier},
title = {Cycles on Siegel threefolds and derivatives of Eisenstein series},
url = {http://eudml.org/doc/82532},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Kudla, Stephen S.
AU - Rapoport, Michael
TI - Cycles on Siegel threefolds and derivatives of Eisenstein series
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 5
SP - 695
EP - 756
LA - eng
KW - Siegel modular variety of genus two; algebraic cycles; special endomorphisms; intersection multiplicities of the cycles at isolated points; special values of derivatives of certain Eisenstein series; metaplectic group
UR - http://eudml.org/doc/82532
ER -

References

top
  1. [1] BOUTOT J.-F., CARAYOL H., Uniformisation p-adique des courbes de Shimura : les théorèmes de Cerednik et de Drinfeld, in : Courbes Modulaires et Courbes de Shimura, Astérisque, Vol. 196-197, 1991, pp. 45-158. Zbl0781.14010MR93c:11041
  2. [2] DELIGNE P., Travaux de Shimura, Sem. Bourbaki 389, Lecture Notes in Math., Vol. 244, Springer-Verlag, Berlin, 1971. Zbl0225.14007MR58 #16675
  3. [3] DELIGNE P., La conjecture de Weil pour les surfaces K3, Invent. Math. 15 (1972) 206-226. Zbl0219.14022MR45 #5137
  4. [4] EICHLER M., Quadratische Formen und orthogonale Gruppen, Springer-Verlag, Berlin, 1974. Zbl0277.10017MR50 #4484
  5. [5] FULTON W., Intersection Theory, Springer-Verlag, Berlin, 1984. Zbl0541.14005MR85k:14004
  6. [6] GENESTIER A., Letter to M. Rapoport, August 12, 1996. 
  7. [7] GROSS B.H., KEATING K., On the intersection of modular correspondances, Invent. Math. 112 (1993) 225-245. Zbl0811.11026MR94h:11046
  8. [8] HASHIMOTO K., Class numbers of positive definite ternary quaternion hermitian forms, Proc. Japan Acad. 59 (1983) 490-493. Zbl0539.10020MR85h:11019
  9. [9] HASHIMOTO K., IBUKIYAMA T., On class numbers of positive definite binary quaternion hermitian forms, J. Fac. Sci. Univ. Tokyo, Sect IA 27 (1980) 549-601. Zbl0452.10029MR82j:10038
  10. [10] IBUKIYAMA T., KATSURA T., OORT F., Supersingular curves of genus two and class numbers, Compos. Math. 57 (1986) 127-152. Zbl0589.14028MR87f:14026
  11. [11] KAISER C., Ein getwistetes fundamentales Lemma für die GSp4, Bonner Mathematische Schriften 303 (1997). Zbl0899.11025MR99k:11078
  12. [12] KATSURA T., OORT F., Families of supersingular abelian surfaces, Compos. Math. 62 (1987) 107-167. Zbl0636.14017MR88j:14053
  13. [13] KITAOKA Y., A note on local representation densities of quadratic forms, Nagoya Math. J. 92 (1983) 145-152. Zbl0523.10012MR85e:11029
  14. [14] KITAOKA Y., Fourier coefficients of Eisenstein series of degree 3, Proc. Japan Acad. 60 (1984) 259-261. Zbl0551.10024MR86d:11041
  15. [15] KITAOKA Y., Arithmetic of Quadratic Forms, Cambridge Tracts in Mathematics, Vol. 106, Cambridge Univ. Press, Cambridge, UK, 1993. Zbl0785.11021MR95c:11044
  16. [16] KOTTWITZ R., Tamagawa numbers, Ann. Math. 127 (1988) 629-646. Zbl0678.22012MR90e:11075
  17. [17] KOTTWITZ R., Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992) 373-444. Zbl0796.14014MR93a:11053
  18. [18] KUDLA S., Algebraic cycles on Shimura varieties of orthogonal type, Duke Math. J. 86 (1997) 39-78. Zbl0879.11026MR98e:11058
  19. [19] KUDLA S., Central derivatives of Eisenstein series and height pairings, Ann. Math. 146 (1997) 545-646. Zbl0990.11032MR99j:11047
  20. [20] KUDLA S., MILLSON J., Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables, Publ. Math. Inst. Hautes Études Sci. 71 (1990) 121-172. Zbl0722.11026MR92e:11035
  21. [21] KUDLA S., RAPOPORT M., Arithmetic Hirzebruch Zagier cycles, J. Reine Angew. Math. 515 (1999) 155-244. Zbl1048.11048MR2002e:11076a
  22. [22] KUDLA S., RAPOPORT M., Height pairings on Shimura curves and p-adic uniformization, Invent. Math. (to appear). Zbl1009.11043
  23. [23] MORET-BAILLY L., Familles de courbes et de variétés abéliennes sur ℙ¹, II. exemple, in : Szpiro L. (Ed.), Séminaire sur les Pinceaux de Courbes de Genre au Moins Deux, Astérisque, Vol. 86, 1981, pp. 125-140. Zbl0515.14007
  24. [24] OORT F., Which abelian surfaces are products of elliptic curves ?, Math. Ann. 214 (1975) 35-47. Zbl0283.14007MR51 #519
  25. [25] RIBET K., On modular representations of Gal(ℚ/ℚ) arising from modular forms, Invent. Math. 100 (1990) 431-476. Zbl0773.11039MR91g:11066
  26. [26] RIBET K., Bimodules and abelian surfaces, Adv. Stud. in Pure Math. 17 (1989) 359-407. Zbl0742.11033MR92a:11070
  27. [27] SERRE J.-P., Algèbre Locale. Multiplicités, Lect. Notes in Math., Vol. 11, Springer-Verlag, Berlin, 1965. Zbl0142.28603MR34 #1352
  28. [28] SHIH K.-Y., Existence of certain canonical models, Duke Math. J. 45 (1978) 63-66. Zbl0386.20023MR81d:10020
  29. [29] SHIMURA G., Arithmetic of alternating forms and quaternion hermitian forms, J. Math. Soc. Japan 15 (1963) 63-65. Zbl0121.28102MR26 #3694
  30. [30] STAMM H., On the reduction of the Hilbert-Blumenthal moduli scheme with Г0(p)-level structure, Forum Math. 9 (1997) 405-455. Zbl0916.14022MR98h:14030
  31. [31] SWEET W.J., A computation of the gamma matrix of a family of p-adic zeta integrals, J. Number Theory 55 (1995) 222-260. Zbl0862.14015MR96m:11108
  32. [32] TONGHAI YANG, An explicit formula for local densities of quadratic forms, J. Number Theory 72 (1998) 309-356. Zbl0930.11021MR99j:11034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.