Holomorphic retractions and boundary Berezin transforms
Jonathan Arazy[1]; Miroslav Engliš[2]; Wilhelm Kaup[3]
- [1] University of Haifa Department of Mathematics 31905 Haifa (Israel)
- [2] Silesian University in Opava Mathematics Institute Na Rybníčku 1 74601 Opava (Czech Republic) and Mathematics Institute Žitná 25 11567 Praha 1 (Czech Republic)
- [3] Universität Tübingen Mathematisches Institut Auf der Morgenstelle 10 72076 Tübingen (Germany)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 2, page 641-657
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topArazy, Jonathan, Engliš, Miroslav, and Kaup, Wilhelm. "Holomorphic retractions and boundary Berezin transforms." Annales de l’institut Fourier 59.2 (2009): 641-657. <http://eudml.org/doc/10408>.
@article{Arazy2009,
abstract = {In an earlier paper, the first two authors have shown that the convolution of a function $f$ continuous on the closure of a Cartan domain and a $K$-invariant finite measure $\mu $ on that domain is again continuous on the closure, and, moreover, its restriction to any boundary face $F$ depends only on the restriction of $f$ to $F$ and is equal to the convolution, in $F$, of the latter restriction with some measure $\mu _F$ on $F$ uniquely determined by $\mu $. In this article, we give an explicit formula for $\mu _F$ in terms of $F$, showing in particular that for measures $\mu $ corresponding to the Berezin transforms the measures $\mu _F$ again correspond to Berezin transforms, but with a shift in the value of the Wallach parameter. Finally, we also obtain a nice and simple description of the holomorphic retraction on these domains which arises as the boundary limit of geodesic symmetries.},
affiliation = {University of Haifa Department of Mathematics 31905 Haifa (Israel); Silesian University in Opava Mathematics Institute Na Rybníčku 1 74601 Opava (Czech Republic) and Mathematics Institute Žitná 25 11567 Praha 1 (Czech Republic); Universität Tübingen Mathematisches Institut Auf der Morgenstelle 10 72076 Tübingen (Germany)},
author = {Arazy, Jonathan, Engliš, Miroslav, Kaup, Wilhelm},
journal = {Annales de l’institut Fourier},
keywords = {Berezin transform; Cartan domain; convolution operator},
language = {eng},
number = {2},
pages = {641-657},
publisher = {Association des Annales de l’institut Fourier},
title = {Holomorphic retractions and boundary Berezin transforms},
url = {http://eudml.org/doc/10408},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Arazy, Jonathan
AU - Engliš, Miroslav
AU - Kaup, Wilhelm
TI - Holomorphic retractions and boundary Berezin transforms
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 2
SP - 641
EP - 657
AB - In an earlier paper, the first two authors have shown that the convolution of a function $f$ continuous on the closure of a Cartan domain and a $K$-invariant finite measure $\mu $ on that domain is again continuous on the closure, and, moreover, its restriction to any boundary face $F$ depends only on the restriction of $f$ to $F$ and is equal to the convolution, in $F$, of the latter restriction with some measure $\mu _F$ on $F$ uniquely determined by $\mu $. In this article, we give an explicit formula for $\mu _F$ in terms of $F$, showing in particular that for measures $\mu $ corresponding to the Berezin transforms the measures $\mu _F$ again correspond to Berezin transforms, but with a shift in the value of the Wallach parameter. Finally, we also obtain a nice and simple description of the holomorphic retraction on these domains which arises as the boundary limit of geodesic symmetries.
LA - eng
KW - Berezin transform; Cartan domain; convolution operator
UR - http://eudml.org/doc/10408
ER -
References
top- J. Arazy, M. Engliš, Iterates and the boundary behavior of the Berezin transform, Ann. Inst. Fourier (Grenoble) 51 (2001), 110-1133 Zbl0989.47027MR1849217
- Jonathan Arazy, A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, Multivariable operator theory (Seattle, WA, 1993) 185 (1995), 7-65, Amer. Math. Soc., Providence, RI Zbl0831.46014MR1332053
- Jonathan Arazy, Bent Ørsted, Asymptotic expansions of Berezin transforms, Indiana Univ. Math. J. 49 (2000), 7-30 Zbl0968.32013MR1777039
- Jonathan Arazy, Gen Kai Zhang, -estimates of spherical functions and an invariant mean-value property, Integral Equations Operator Theory 23 (1995), 123-144 Zbl0837.31003MR1351341
- C. A. Berger, L. A. Coburn, K. H. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus, Amer. J. Math. 110 (1988), 921-953 Zbl0657.32001MR961500
- L. A. Coburn, A Lipschitz estimate for Berezin’s operator calculus, Proc. Amer. Math. Soc. 133 (2005), 127-131 (electronic) Zbl1093.47024MR2085161
- Jacques Faraut, Adam Korányi, Analysis on symmetric cones, (1994), The Clarendon Press Oxford University Press, New York Zbl0841.43002MR1446489
- Lawrence A. Harris, Bounded symmetric homogeneous domains in infinite dimensional spaces, Proceedings on Infinite Dimensional Holomorphy (Internat. Conf., Univ. Kentucky, Lexington, Ky., 1973) (1974), 13-40. Lecture Notes in Math., Vol. 364, Springer, Berlin Zbl0293.46049MR407330
- L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, (1963), American Mathematical Society, Providence, R.I. Zbl0507.32025MR171936
- W. Kaup, J. Sauter, Boundary structure of bounded symmetric domains, Manuscripta Math. 101 (2000), 351-360 Zbl0981.32012MR1751038
- Ottmar Loos, Bounded symmetric domains and Jordan pairs, (1977) Zbl0228.32012
- Jaak Peetre, The Berezin transform and Ha-plitz operators, J. Operator Theory 24 (1990), 165-186 Zbl0793.47026MR1086552
- Karl Stein, Maximale holomorphe und meromorphe Abbildungen. II, Amer. J. Math. 86 (1964), 823-868 Zbl0144.33901MR171030
- A. Unterberger, H. Upmeier, The Berezin transform and invariant differential operators, Comm. Math. Phys. 164 (1994), 563-597 Zbl0843.32019MR1291245
- Harald Upmeier, Jordan algebras in analysis, operator theory, and quantum mechanics, 67 (1987), Published for the Conference Board of the Mathematical Sciences, Washington, DC Zbl0608.17013MR874756
- Genkai Zhang, Berezin transform on real bounded symmetric domains, Trans. Amer. Math. Soc. 353 (2001), 3769-3787 (electronic) Zbl0965.22015MR1837258
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.