Iterates and the boundary behavior of the Berezin transform
Jonathan Arazy[1]; Miroslav Engliš[2]
- [1] University of Haifa, Department of Mathematics, Haifa 31905 (Israël)
- [2] Academy of Sciences, Mathematics Institute, Ztiná 25, 11567 Prague 1 (République Thèque)
Annales de l’institut Fourier (2001)
- Volume: 51, Issue: 4, page 1101-1133
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topArazy, Jonathan, and Engliš, Miroslav. "Iterates and the boundary behavior of the Berezin transform." Annales de l’institut Fourier 51.4 (2001): 1101-1133. <http://eudml.org/doc/115936>.
@article{Arazy2001,
abstract = {Let $\mu $ be a measure on a domain $\Omega $ in $\{\mathbb \{C\}\}^n$ such that the Bergman space
of holomorphic functions in $L^2(\Omega ,\mu )$ possesses a reproducing kernel $K(x,y)$ and
$K(x,x)>0$$\forall x\in \Omega $. The Berezin transform associated to $\mu $ is the
integral operator\[ Bf(y) = K(y,y)^\{-1\} \int \_\Omega f(x)\vert K(x,y)\vert ^2 \,d\mu (x).
\]The number $Bf(y)$ can be interpreted as a certain mean value of $f$ around $y$, and
functions satisfying $Bf=f$ as functions having a certain mean-value property. In this
paper we investigate the boundary behavior of $Bf$, the existence of functions $f$ satisfying $Bf=f$ and having prescribed boundary values, and the convergence of the
iterates $B^k f$, $k\rightarrow \infty $. The best results are obtained for smoothly bounded
strictly pseudoconvex domains $\Omega $ with any measure $\mu $ as above, and for bounded
symmetric domains $\Omega $ and $\mu $ one of the standard rotation-invariant measures on
them. We also carry out similar investigation for convolution operators $B_\mu f=f*\mu $ on a bounded symmetric domain $\Omega =G/K$ with a $K$-invariant absolutely continuous
probability measure $\mu $, and study the behavior of the geodesic symmetries $\phi _a$ of
$\Omega $ as $a$ tends to the boundary.},
affiliation = {University of Haifa, Department of Mathematics, Haifa 31905 (Israël); Academy of Sciences, Mathematics Institute, Ztiná 25, 11567 Prague 1 (République Thèque)},
author = {Arazy, Jonathan, Engliš, Miroslav},
journal = {Annales de l’institut Fourier},
keywords = {Berezin transform; geodesic symmetry; Cartan domain; stochastic operator; -Poisson extension; disk algebra; limiting behaviour of the iterates; Bergman space; fixes holomorphic functions; convolution operators},
language = {eng},
number = {4},
pages = {1101-1133},
publisher = {Association des Annales de l'Institut Fourier},
title = {Iterates and the boundary behavior of the Berezin transform},
url = {http://eudml.org/doc/115936},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Arazy, Jonathan
AU - Engliš, Miroslav
TI - Iterates and the boundary behavior of the Berezin transform
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 4
SP - 1101
EP - 1133
AB - Let $\mu $ be a measure on a domain $\Omega $ in ${\mathbb {C}}^n$ such that the Bergman space
of holomorphic functions in $L^2(\Omega ,\mu )$ possesses a reproducing kernel $K(x,y)$ and
$K(x,x)>0$$\forall x\in \Omega $. The Berezin transform associated to $\mu $ is the
integral operator\[ Bf(y) = K(y,y)^{-1} \int _\Omega f(x)\vert K(x,y)\vert ^2 \,d\mu (x).
\]The number $Bf(y)$ can be interpreted as a certain mean value of $f$ around $y$, and
functions satisfying $Bf=f$ as functions having a certain mean-value property. In this
paper we investigate the boundary behavior of $Bf$, the existence of functions $f$ satisfying $Bf=f$ and having prescribed boundary values, and the convergence of the
iterates $B^k f$, $k\rightarrow \infty $. The best results are obtained for smoothly bounded
strictly pseudoconvex domains $\Omega $ with any measure $\mu $ as above, and for bounded
symmetric domains $\Omega $ and $\mu $ one of the standard rotation-invariant measures on
them. We also carry out similar investigation for convolution operators $B_\mu f=f*\mu $ on a bounded symmetric domain $\Omega =G/K$ with a $K$-invariant absolutely continuous
probability measure $\mu $, and study the behavior of the geodesic symmetries $\phi _a$ of
$\Omega $ as $a$ tends to the boundary.
LA - eng
KW - Berezin transform; geodesic symmetry; Cartan domain; stochastic operator; -Poisson extension; disk algebra; limiting behaviour of the iterates; Bergman space; fixes holomorphic functions; convolution operators
UR - http://eudml.org/doc/115936
ER -
References
top- J. Arazy, A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, Multivariable operator theory vol. 185 (1995), 7-65, Amer. Math. Soc., Providence Zbl0831.46014
- J. Arazy, G. Zhang, Invariant mean value and harmonicity in Cartan and Siegel domains, Interaction between functional analysis, harmonic analysis, and probability (Columbia, MO, 1994) vol. 175 (1996), 19-40, Dekker, New York Zbl0839.43019
- S. Axler, J. Lech, Fixed points of the Berezin transform on multiply connected domains, (1997)
- J. Faraut, A. Korányi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal. 88 (1990), 64-89 Zbl0718.32026MR1033914
- H. Fürstenberg, Poisson formula for semisimple Lie groups, Ann. Math. 77 (1963), 335-386 Zbl0192.12704MR146298
- T.W. Gamelin, Uniform algebras, (1969), Prentice-Hall, Englewood Cliffs Zbl0213.40401MR410387
- R. Godement, Une généralisation des représentations de la moyenne pour les fonctions harmoniques, C. R. Acad. Sci. Paris 234 (1952), 2137-2139 Zbl0049.30301MR47056
- G.M. Goluzin, Geometric theory of functions of a complex variable, (1966), Nauka, Moscou Zbl0148.30603MR219714
- S. Helgason, Differential geometry and symmetric spaces, (1962), Academic Press, New York Zbl0111.18101MR145455
- W. Kaup, J. Sauter, Boundary structure of bounded symmetric domains, Manuscripta Math. 101 (2000), 351-360 Zbl0981.32012MR1751038
- S.G. Krantz, Function theory of several complex variables, (1992), Wadsworth & Brooks/Cole, Pacific Grove Zbl0776.32001MR1162310
- J. Lee, Properties of the Berezin transform of bounded functions, Bull. Austral. Math. Soc. 59 (1999), 21-31 Zbl0926.31002MR1672775
- O. Loos, Bounded symmetric domains and Jordan pairs, (1977)
- K. Zhu, A limit property of the Berezin transform, (1999)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.