The spectrum of Schrödinger operators with random δ magnetic fields

Takuya Mine[1]; Yuji Nomura[2]

  • [1] Kyoto Institute of Technology Department of Comprehensive Sciences Matsugasaki Sakyo-ku Kyoto 606-8585 (Japan)
  • [2] Ehime University Department of Computer Science Graduate School of Science and Engineering 3 Bunkyo-cho Matsuyama, Ehime 790-8577 (Japan)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 2, page 659-689
  • ISSN: 0373-0956

Abstract

top
We shall consider the Schrödinger operators on 2 with the magnetic field given by a nonnegative constant field plus random δ magnetic fields of the Anderson type or of the Poisson-Anderson type. We shall investigate the spectrum of these operators by the method of the admissible potentials by Kirsch-Martinelli. Moreover, we shall prove the lower Landau levels are infinitely degenerated eigenvalues when the constant field is sufficiently large, by estimating the growth order of the eigenfunctions using the entire function theory by Levin.

How to cite

top

Mine, Takuya, and Nomura, Yuji. "The spectrum of Schrödinger operators with random $\delta $ magnetic fields." Annales de l’institut Fourier 59.2 (2009): 659-689. <http://eudml.org/doc/10409>.

@article{Mine2009,
abstract = {We shall consider the Schrödinger operators on $\mathbb\{R\}^2$ with the magnetic field given by a nonnegative constant field plus random $\delta $ magnetic fields of the Anderson type or of the Poisson-Anderson type. We shall investigate the spectrum of these operators by the method of the admissible potentials by Kirsch-Martinelli. Moreover, we shall prove the lower Landau levels are infinitely degenerated eigenvalues when the constant field is sufficiently large, by estimating the growth order of the eigenfunctions using the entire function theory by Levin.},
affiliation = {Kyoto Institute of Technology Department of Comprehensive Sciences Matsugasaki Sakyo-ku Kyoto 606-8585 (Japan); Ehime University Department of Computer Science Graduate School of Science and Engineering 3 Bunkyo-cho Matsuyama, Ehime 790-8577 (Japan)},
author = {Mine, Takuya, Nomura, Yuji},
journal = {Annales de l’institut Fourier},
keywords = {Schrödinger operator; random magnetic field; singular magnetic field; Aharonov-Bohm effect; Landau level; entire function},
language = {eng},
number = {2},
pages = {659-689},
publisher = {Association des Annales de l’institut Fourier},
title = {The spectrum of Schrödinger operators with random $\delta $ magnetic fields},
url = {http://eudml.org/doc/10409},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Mine, Takuya
AU - Nomura, Yuji
TI - The spectrum of Schrödinger operators with random $\delta $ magnetic fields
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 2
SP - 659
EP - 689
AB - We shall consider the Schrödinger operators on $\mathbb{R}^2$ with the magnetic field given by a nonnegative constant field plus random $\delta $ magnetic fields of the Anderson type or of the Poisson-Anderson type. We shall investigate the spectrum of these operators by the method of the admissible potentials by Kirsch-Martinelli. Moreover, we shall prove the lower Landau levels are infinitely degenerated eigenvalues when the constant field is sufficiently large, by estimating the growth order of the eigenfunctions using the entire function theory by Levin.
LA - eng
KW - Schrödinger operator; random magnetic field; singular magnetic field; Aharonov-Bohm effect; Landau level; entire function
UR - http://eudml.org/doc/10409
ER -

References

top
  1. Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115 (1959), 485-491 Zbl0099.43102MR110458
  2. S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable models in quantum mechanics, (1988), Springer-Verlag, New York Zbl0679.46057MR926273
  3. K. Ando, A. Iwatsuka, M. Kaminaga, F. Nakano, The spectrum of Schrödinger operators with Poisson type random potential, Ann. Henri Poincaré 7 (2006), 145-160 Zbl1091.81014MR2205467
  4. Y. Avishai, M. Ya. Azbel, S. A. Gredeskul, Electron in a magnetic field interacting with point impurities, Phys. Rev. B 48 (1993), 17280-17295 
  5. Y. Avishai, R. M. Redheffer, Two dimensional disordered electronic systems in a strong magnetic field, Phys. Rev. B 47 (1993), 2089-2100 
  6. Y. Avishai, R. M. Redheffer, Y. B. Band, Electron states in a magnetic field and random impurity potential: use of the theory of entire functions, J. Phys. A 25 (1992), 3883-3889 Zbl0784.30024
  7. J. L. Borg, Private communication 
  8. J. L. Borg, J. V. Pulé, Lifshits tails for random smooth magnetic vortices, J. Math. Phys. 45 (2004), 4493-4505 Zbl1064.82018MR2105202
  9. G. Chistyakov, Y. Lyubarskii, L. Pastur, On completeness of random exponentials in the Bargmann-Fock space, J. Math. Phys. 42 (2001), 3754-3768 Zbl1009.42005MR1845217
  10. J. Desbois, C. Furtlehner, S. Ouvry, Random magnetic impurities and the Landau problem, Nuclear Physics B 453 (1995), 759-776 
  11. J. Desbois, C. Furtlehner, S. Ouvry, Density correlations of magnetic impurities and disorder, J. Phys. A: Math. Gen. 30 (1997), 7291-7300 Zbl0925.82114
  12. J. Desbois, S. Ouvry, C. Texier, Hall conductivity for two-dimensional magnetic systems, Nuclear Physics B 500 (1997), 486-510 Zbl0934.81074MR1471659
  13. E. I. Dinaburg, Y. G. Sinai, A. B. Soshnikov, Splitting of the low Landau levels into a set of positive Lebesgue measure under small periodic perturbations, Comm. Math. Phys. 189 (1997), 559-575 Zbl0888.60055MR1480033
  14. T. C. Dorlas, N. Macris, J. V. Pulé, Characterization of the spectrum of the Landau Hamiltonian with delta impurities, Comm. Math. Phys. 204 (1999), 367-396 Zbl0937.60063MR1704280
  15. P. Exner, P. Šťovíček, P. Vytřas, Generalized boundary conditions for the Aharonov-Bohm effect combined with a homogeneous magnetic field, J. Math. Phys. 43 (2002), 2151-2168 Zbl1059.81056MR1893665
  16. V. A. Geĭler, The two-dimensional Schrödinger operator with a homogeneous magnetic field and its perturbations by periodic zero-range potentials, St. Petersburg Math. J. 3 (1992), 489-532 MR1150551
  17. A. K. Geim, S. J. Bending, I. V. Grigorieva, Asymmetric scattering and diffraction of two-dimensional electrons at quantized tubes of magnetic flux, Phys. Rev. Lett. 69 (1992), 2252-2255 
  18. A. K. Geim, S. J. Bending, I. V. Grigorieva, M. G. Blamire, Ballistic two-dimensional electrons in a random magnetic field, Phys. Rev. B 49 (1994), 5749-5752 
  19. V. A. Geyler, E  N. Grishanov, Zero Modes in a Periodic System of Aharonov-Bohm Solenoids, JETP Letters 75 (2002), 354-356 
  20. V. A. Geyler, P. Šťovíček, Zero modes in a system of Aharonov-Bohm fluxes, Rev. Math. Phys. 16 (2004), 851-907 Zbl1063.81054MR2097362
  21. H. T. Ito, H. Tamura, Aharonov-Bohm effect in scattering by point-like magnetic fields at large separation, Ann. Henri Poincaré 2 (2001), 309-359 Zbl0992.81084MR1832970
  22. W. Kirsch, Random Schrödinger operators. A course, in Schrödinger operators, (Sønderborg, 1988), p.264–370, 345 (1989), Springer, Berlin Zbl0712.35070MR1037323
  23. W. Kirsch, F. Martinelli, On the spectrum of Schrödinger operators with a random potential, Comm. Math. Phys. 85 (1982), 329-350 Zbl0506.60058MR678150
  24. A. Laptev, T. Weidl, Hardy inequalities for magnetic Dirichlet forms, in Mathematical results in quantum mechanics (Prague, 1998), Oper. Theory Adv. Appl. 108 (1999), 299-305 Zbl0977.26005MR1708811
  25. B. Ja. Levin, Distribution of zeros of entire functions, (1964), American Mathematical Society Zbl0152.06703MR156975
  26. M. Melgaard, E.-M. Ouhabaz, G. Rozenblum, Negative discrete spectrum of perturbed multivortex Aharonov-Bohm Hamiltonians, Ann. Henri Poincaré 5 (2004), 979-1012 Zbl1059.81049MR2091985
  27. T. Mine, The Aharonov-Bohm solenoids in a constant magnetic field, Ann. Henri Poincaré 6 (2005), 125-154 Zbl1062.81034MR2121279
  28. T. Mine, Y. Nomura, Periodic Aharonov-Bohm Solenoids in a Constant Magnetic Field, Rev. Math. Phys. 18 (2006), 913-934 Zbl1113.81055MR2273660
  29. Y. Nambu, The Aharonov-Bohm problem revisited, Nuclear Phys. B 579 (2000), 590-616 Zbl1071.81525MR1769914
  30. M. Reed, B. Simon, Methods of modern mathematical physics. I. Functional analysis. Second edition, (1980), Academic Press Zbl0459.46001MR751959
  31. R.-D. Reiss, A course on point processes, (1993), Springer-Verlag, New York Zbl0771.60037MR1199815
  32. G. Rozenblum, N. Shirokov, Infiniteness of zero modes for the Pauli operator with singular magnetic field, J. Funct. Anal. 233 (2006), 135-172 Zbl1088.81046MR2204677
  33. S. N. M. Ruijsenaars, The Aharonov-Bohm effect and scattering theory, Ann. Physics 146 (1983), 1-34 Zbl0554.47003MR701261
  34. J. Zak, Group-theoretical consideration of Landau level broadening in crystals, Phys. Rev. 136 (1964), A776-A780 MR177773

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.