The spectrum of Schrödinger operators with random magnetic fields
Takuya Mine[1]; Yuji Nomura[2]
- [1] Kyoto Institute of Technology Department of Comprehensive Sciences Matsugasaki Sakyo-ku Kyoto 606-8585 (Japan)
- [2] Ehime University Department of Computer Science Graduate School of Science and Engineering 3 Bunkyo-cho Matsuyama, Ehime 790-8577 (Japan)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 2, page 659-689
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMine, Takuya, and Nomura, Yuji. "The spectrum of Schrödinger operators with random $\delta $ magnetic fields." Annales de l’institut Fourier 59.2 (2009): 659-689. <http://eudml.org/doc/10409>.
@article{Mine2009,
abstract = {We shall consider the Schrödinger operators on $\mathbb\{R\}^2$ with the magnetic field given by a nonnegative constant field plus random $\delta $ magnetic fields of the Anderson type or of the Poisson-Anderson type. We shall investigate the spectrum of these operators by the method of the admissible potentials by Kirsch-Martinelli. Moreover, we shall prove the lower Landau levels are infinitely degenerated eigenvalues when the constant field is sufficiently large, by estimating the growth order of the eigenfunctions using the entire function theory by Levin.},
affiliation = {Kyoto Institute of Technology Department of Comprehensive Sciences Matsugasaki Sakyo-ku Kyoto 606-8585 (Japan); Ehime University Department of Computer Science Graduate School of Science and Engineering 3 Bunkyo-cho Matsuyama, Ehime 790-8577 (Japan)},
author = {Mine, Takuya, Nomura, Yuji},
journal = {Annales de l’institut Fourier},
keywords = {Schrödinger operator; random magnetic field; singular magnetic field; Aharonov-Bohm effect; Landau level; entire function},
language = {eng},
number = {2},
pages = {659-689},
publisher = {Association des Annales de l’institut Fourier},
title = {The spectrum of Schrödinger operators with random $\delta $ magnetic fields},
url = {http://eudml.org/doc/10409},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Mine, Takuya
AU - Nomura, Yuji
TI - The spectrum of Schrödinger operators with random $\delta $ magnetic fields
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 2
SP - 659
EP - 689
AB - We shall consider the Schrödinger operators on $\mathbb{R}^2$ with the magnetic field given by a nonnegative constant field plus random $\delta $ magnetic fields of the Anderson type or of the Poisson-Anderson type. We shall investigate the spectrum of these operators by the method of the admissible potentials by Kirsch-Martinelli. Moreover, we shall prove the lower Landau levels are infinitely degenerated eigenvalues when the constant field is sufficiently large, by estimating the growth order of the eigenfunctions using the entire function theory by Levin.
LA - eng
KW - Schrödinger operator; random magnetic field; singular magnetic field; Aharonov-Bohm effect; Landau level; entire function
UR - http://eudml.org/doc/10409
ER -
References
top- Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115 (1959), 485-491 Zbl0099.43102MR110458
- S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable models in quantum mechanics, (1988), Springer-Verlag, New York Zbl0679.46057MR926273
- K. Ando, A. Iwatsuka, M. Kaminaga, F. Nakano, The spectrum of Schrödinger operators with Poisson type random potential, Ann. Henri Poincaré 7 (2006), 145-160 Zbl1091.81014MR2205467
- Y. Avishai, M. Ya. Azbel, S. A. Gredeskul, Electron in a magnetic field interacting with point impurities, Phys. Rev. B 48 (1993), 17280-17295
- Y. Avishai, R. M. Redheffer, Two dimensional disordered electronic systems in a strong magnetic field, Phys. Rev. B 47 (1993), 2089-2100
- Y. Avishai, R. M. Redheffer, Y. B. Band, Electron states in a magnetic field and random impurity potential: use of the theory of entire functions, J. Phys. A 25 (1992), 3883-3889 Zbl0784.30024
- J. L. Borg, Private communication
- J. L. Borg, J. V. Pulé, Lifshits tails for random smooth magnetic vortices, J. Math. Phys. 45 (2004), 4493-4505 Zbl1064.82018MR2105202
- G. Chistyakov, Y. Lyubarskii, L. Pastur, On completeness of random exponentials in the Bargmann-Fock space, J. Math. Phys. 42 (2001), 3754-3768 Zbl1009.42005MR1845217
- J. Desbois, C. Furtlehner, S. Ouvry, Random magnetic impurities and the Landau problem, Nuclear Physics B 453 (1995), 759-776
- J. Desbois, C. Furtlehner, S. Ouvry, Density correlations of magnetic impurities and disorder, J. Phys. A: Math. Gen. 30 (1997), 7291-7300 Zbl0925.82114
- J. Desbois, S. Ouvry, C. Texier, Hall conductivity for two-dimensional magnetic systems, Nuclear Physics B 500 (1997), 486-510 Zbl0934.81074MR1471659
- E. I. Dinaburg, Y. G. Sinai, A. B. Soshnikov, Splitting of the low Landau levels into a set of positive Lebesgue measure under small periodic perturbations, Comm. Math. Phys. 189 (1997), 559-575 Zbl0888.60055MR1480033
- T. C. Dorlas, N. Macris, J. V. Pulé, Characterization of the spectrum of the Landau Hamiltonian with delta impurities, Comm. Math. Phys. 204 (1999), 367-396 Zbl0937.60063MR1704280
- P. Exner, P. Šťovíček, P. Vytřas, Generalized boundary conditions for the Aharonov-Bohm effect combined with a homogeneous magnetic field, J. Math. Phys. 43 (2002), 2151-2168 Zbl1059.81056MR1893665
- V. A. Geĭler, The two-dimensional Schrödinger operator with a homogeneous magnetic field and its perturbations by periodic zero-range potentials, St. Petersburg Math. J. 3 (1992), 489-532 MR1150551
- A. K. Geim, S. J. Bending, I. V. Grigorieva, Asymmetric scattering and diffraction of two-dimensional electrons at quantized tubes of magnetic flux, Phys. Rev. Lett. 69 (1992), 2252-2255
- A. K. Geim, S. J. Bending, I. V. Grigorieva, M. G. Blamire, Ballistic two-dimensional electrons in a random magnetic field, Phys. Rev. B 49 (1994), 5749-5752
- V. A. Geyler, E N. Grishanov, Zero Modes in a Periodic System of Aharonov-Bohm Solenoids, JETP Letters 75 (2002), 354-356
- V. A. Geyler, P. Šťovíček, Zero modes in a system of Aharonov-Bohm fluxes, Rev. Math. Phys. 16 (2004), 851-907 Zbl1063.81054MR2097362
- H. T. Ito, H. Tamura, Aharonov-Bohm effect in scattering by point-like magnetic fields at large separation, Ann. Henri Poincaré 2 (2001), 309-359 Zbl0992.81084MR1832970
- W. Kirsch, Random Schrödinger operators. A course, in Schrödinger operators, (Sønderborg, 1988), p.264–370, 345 (1989), Springer, Berlin Zbl0712.35070MR1037323
- W. Kirsch, F. Martinelli, On the spectrum of Schrödinger operators with a random potential, Comm. Math. Phys. 85 (1982), 329-350 Zbl0506.60058MR678150
- A. Laptev, T. Weidl, Hardy inequalities for magnetic Dirichlet forms, in Mathematical results in quantum mechanics (Prague, 1998), Oper. Theory Adv. Appl. 108 (1999), 299-305 Zbl0977.26005MR1708811
- B. Ja. Levin, Distribution of zeros of entire functions, (1964), American Mathematical Society Zbl0152.06703MR156975
- M. Melgaard, E.-M. Ouhabaz, G. Rozenblum, Negative discrete spectrum of perturbed multivortex Aharonov-Bohm Hamiltonians, Ann. Henri Poincaré 5 (2004), 979-1012 Zbl1059.81049MR2091985
- T. Mine, The Aharonov-Bohm solenoids in a constant magnetic field, Ann. Henri Poincaré 6 (2005), 125-154 Zbl1062.81034MR2121279
- T. Mine, Y. Nomura, Periodic Aharonov-Bohm Solenoids in a Constant Magnetic Field, Rev. Math. Phys. 18 (2006), 913-934 Zbl1113.81055MR2273660
- Y. Nambu, The Aharonov-Bohm problem revisited, Nuclear Phys. B 579 (2000), 590-616 Zbl1071.81525MR1769914
- M. Reed, B. Simon, Methods of modern mathematical physics. I. Functional analysis. Second edition, (1980), Academic Press Zbl0459.46001MR751959
- R.-D. Reiss, A course on point processes, (1993), Springer-Verlag, New York Zbl0771.60037MR1199815
- G. Rozenblum, N. Shirokov, Infiniteness of zero modes for the Pauli operator with singular magnetic field, J. Funct. Anal. 233 (2006), 135-172 Zbl1088.81046MR2204677
- S. N. M. Ruijsenaars, The Aharonov-Bohm effect and scattering theory, Ann. Physics 146 (1983), 1-34 Zbl0554.47003MR701261
- J. Zak, Group-theoretical consideration of Landau level broadening in crystals, Phys. Rev. 136 (1964), A776-A780 MR177773
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.