Displaying similar documents to “The spectrum of Schrödinger operators with random δ magnetic fields”

Invariant measures for the defocusing Nonlinear Schrödinger equation

Nikolay Tzvetkov (2008)

Annales de l’institut Fourier

Similarity:

We prove the existence and the invariance of a Gibbs measure associated to the defocusing sub-quintic Nonlinear Schrödinger equations on the disc of the plane 2 . We also prove an estimate giving some intuition to what may happen in 3 dimensions.

Simultaneous reduction to normal forms of commuting singular vector fields with linear parts having Jordan blocks

Masafumi Yoshino, Todor Gramchev (2008)

Annales de l’institut Fourier

Similarity:

We study the simultaneous linearizability of d –actions (and the corresponding d -dimensional Lie algebras) defined by commuting singular vector fields in n fixing the origin with nontrivial Jordan blocks in the linear parts. We prove the analytic convergence of the formal linearizing transformations under a certain invariant geometric condition for the spectrum of d vector fields generating a Lie algebra. If the condition fails and if we consider the situation where small denominators...

Remarks on the Fundamental Solution to Schrödinger Equation with Variable Coefficients

Kenichi Ito, Shu Nakamura (2012)

Annales de l’institut Fourier

Similarity:

We consider Schrödinger operators H on n with variable coefficients. Let H 0 = - 1 2 be the free Schrödinger operator and we suppose H is a “short-range” perturbation of H 0 . Then, under the nontrapping condition, we show that the time evolution operator: e - i t H can be written as a product of the free evolution operator e - i t H 0 and a Fourier integral operator W ( t ) which is associated to the canonical relation given by the classical mechanical scattering. We also prove a similar result for the wave operators....

Isotropic random walks on affine buildings

James Parkinson (2007)

Annales de l’institut Fourier

Similarity:

In this paper we apply techniques of spherical harmonic analysis to prove a local limit theorem, a rate of escape theorem, and a central limit theorem for isotropic random walks on arbitrary thick regular affine buildings of irreducible type. This generalises results of Cartwright and Woess where A ˜ n buildings are studied, Lindlbauer and Voit where A ˜ 2 buildings are studied, and Sawyer where homogeneous trees are studied (these are A ˜ 1 buildings).

Maximal inequalities and Riesz transform estimates on L p spaces for Schrödinger operators with nonnegative potentials

Pascal Auscher, Besma Ben Ali (2007)

Annales de l’institut Fourier

Similarity:

We show various L p estimates for Schrödinger operators - Δ + V on n and their square roots. We assume reverse Hölder estimates on the potential, and improve some results of Shen. Our main tools are improved Fefferman-Phong inequalities and reverse Hölder estimates for weak solutions of - Δ + V and their gradients.