The chameleon groups of Richards J. Thompson: automorphisms and dynamics

Matthew G. Brin

Publications Mathématiques de l'IHÉS (1996)

  • Volume: 84, page 5-33
  • ISSN: 0073-8301

How to cite

top

Brin, Matthew G.. "The chameleon groups of Richards J. Thompson: automorphisms and dynamics." Publications Mathématiques de l'IHÉS 84 (1996): 5-33. <http://eudml.org/doc/104117>.

@article{Brin1996,
author = {Brin, Matthew G.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {ordered permutation group; automorphism; homeomorphism group},
language = {eng},
pages = {5-33},
publisher = {Institut des Hautes Études Scientifiques},
title = {The chameleon groups of Richards J. Thompson: automorphisms and dynamics},
url = {http://eudml.org/doc/104117},
volume = {84},
year = {1996},
}

TY - JOUR
AU - Brin, Matthew G.
TI - The chameleon groups of Richards J. Thompson: automorphisms and dynamics
JO - Publications Mathématiques de l'IHÉS
PY - 1996
PB - Institut des Hautes Études Scientifiques
VL - 84
SP - 5
EP - 33
LA - eng
KW - ordered permutation group; automorphism; homeomorphism group
UR - http://eudml.org/doc/104117
ER -

References

top
  1. [1] R. BIERI and R. STREBEL, On groups of PL-homeomorphisms of the real line, preprint, Math. Sem. der Univ. Frankfurt, Frankfurt, 1985. 
  2. [2] M. G. Brin and C. C. Squier, Groups of piecewise linear homeomorphisms of the real line, Invent. Math., 79 (1985), 485-498. Zbl0563.57022MR86h:57033
  3. [3] K. S. BROWN, Finiteness properties of groups, J. Pure and Applied Algebra, 44 (1987), 45-75. Zbl0613.20033MR88m:20110
  4. [4] K. S. BROWN, The geometry of finitely presented infinite simple groups, Algorithms and Classification in Combinatorial Group Theory, G. Baumslag and C. F. Miller, III, Eds., MSRI Publications, Number 23, Springer-Verlag, New York, 1991, p. 121-136. Zbl0753.20007MR94f:20059
  5. [5] K. S. BROWN, The geometry of rewriting systems: a proof of the Anick-Groves-Squier Theorem, ibid., p. 137-163. Zbl0764.20016MR94g:20041
  6. [6] K. S. BROWN and R. GEOGHEGAN, An infinite-dimensional torsion-free FP∞ group, Invent. Math., 77 (1984), 367-381. Zbl0557.55009MR85m:20073
  7. [7] J. W. CANNON, W. J. FLOYD and W. R. PARRY, Notes on Richard Thompson's groups F and T, to appear in L'Enseignement Mathématique. Zbl0880.20027
  8. [8] C. G. CHEHATA, An algebraically simple ordered group, Proc. Lond. Math. Soc. (3), 2 (1952), 183-197. Zbl0046.02501MR13,817b
  9. [9] S. CLEARY, Groups of piecewise-linear homeomorphisms with irrational slopes, Rocky Mountain J. Math., 25 (1995), 935-955. Zbl0857.57023MR97d:20040
  10. [10] J. DYDAK and J. SEGAL, Shape Theory: An Introduction, Lecture Notes in Math., Number 688, Springer-Verlag, Berlin, 1978. Zbl0401.54028MR80h:54020
  11. [11] P. FREYD and A. HELLER, Splitting homotopy idempotents, II, J. Pure and Applied Algebra, 89 (1993), 93-106. Zbl0786.55008MR95h:55015
  12. [12] E. GHYS and V. SERGIESCU, Sur un groupe remarquable de difféomorphismes du cercle, preprint IHES/M/85/65, Institut des Hautes Études Scientifiques, Bures-sur-Yvette, 1985. Zbl0647.58009
  13. [13] E. GHYS and V. SERGIESCU, Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helvetici, 62 (1987), 185-239. Zbl0647.58009MR90c:57035
  14. [14] P. GREENBERG, Pseudogroups from group actions, Amer. J. Math., 109 (1987), 893-906. Zbl0644.57012MR88k:57048
  15. [15] P. GREENBERG, Projective aspects of the Higman-Thompson group, Group Theory from a Geometrical Viewpoint, ICTP conference, Triest, Italy, 1990, E. Ghys, A. Haefliger, A. Verjovsky, Editors, World Scientific, Singapore, 1991, p. 633-644. Zbl0860.57038MR93j:20079
  16. [16] P. GREENBERG and V. SERGIESCU, An acyclic extension of the braid group, Comm. Math. Helvetici, 66 (1991), 109-138. Zbl0736.20020MR92b:57004
  17. [17] H. M. HASTINGS and A. HELLER, Homotopy idempotents on finite-dimensional complexes split, Proc. Amer. Math. Soc., 85 (1982), 619-622. Zbl0513.55011MR83j:55010
  18. [18] S. H. MCCLEARY, Groups of homeomorphisms with manageable automorphism groups, Comm. in Algebra, 6 (1978), 497-528. Zbl0377.20035MR81e:20045
  19. [19] S. H. MCCLEARY and M. RUBIN, Locally moving groups and the reconstruction problem for chains and circles, preprint, Bowling Green State University, Bowling Green, Ohio. 
  20. [20] R. MCKENZIE and R. J. THOMPSON, An elementary construction of unsolvable word problems in group theory, Word Problems, Boone, Cannonito and Lyndon Eds., North Holland, 1973, p. 457-478. Zbl0286.02047MR53 #629
  21. [21] J. N. MATHER, Integrability in codimension 1, Comment. Math. Helvetici, 48 (1973), 195-233. Zbl0284.57016MR50 #8556
  22. [22] E. A. SCOTT, A tour around finitely presented infinite simple groups, Algorithms and Classification in Combinatorial Group Theory, G. Baumslag and C. F. Miller, III, Eds., MSRI Publications, Number 23, Springer-Verlag, New York, 1991, p. 83-119. Zbl0753.20008MR94j:20030
  23. [23] M. STEIN, Groups of piecewise linear homeomorphisms, Trans. Amer. Math. Soc., 332 (1992), 477-514. Zbl0798.20025MR92k:20075

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.