The chameleon groups of Richards J. Thompson: automorphisms and dynamics
Publications Mathématiques de l'IHÉS (1996)
- Volume: 84, page 5-33
- ISSN: 0073-8301
Access Full Article
topHow to cite
topBrin, Matthew G.. "The chameleon groups of Richards J. Thompson: automorphisms and dynamics." Publications Mathématiques de l'IHÉS 84 (1996): 5-33. <http://eudml.org/doc/104117>.
@article{Brin1996,
author = {Brin, Matthew G.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {ordered permutation group; automorphism; homeomorphism group},
language = {eng},
pages = {5-33},
publisher = {Institut des Hautes Études Scientifiques},
title = {The chameleon groups of Richards J. Thompson: automorphisms and dynamics},
url = {http://eudml.org/doc/104117},
volume = {84},
year = {1996},
}
TY - JOUR
AU - Brin, Matthew G.
TI - The chameleon groups of Richards J. Thompson: automorphisms and dynamics
JO - Publications Mathématiques de l'IHÉS
PY - 1996
PB - Institut des Hautes Études Scientifiques
VL - 84
SP - 5
EP - 33
LA - eng
KW - ordered permutation group; automorphism; homeomorphism group
UR - http://eudml.org/doc/104117
ER -
References
top- [1] R. BIERI and R. STREBEL, On groups of PL-homeomorphisms of the real line, preprint, Math. Sem. der Univ. Frankfurt, Frankfurt, 1985.
- [2] M. G. Brin and C. C. Squier, Groups of piecewise linear homeomorphisms of the real line, Invent. Math., 79 (1985), 485-498. Zbl0563.57022MR86h:57033
- [3] K. S. BROWN, Finiteness properties of groups, J. Pure and Applied Algebra, 44 (1987), 45-75. Zbl0613.20033MR88m:20110
- [4] K. S. BROWN, The geometry of finitely presented infinite simple groups, Algorithms and Classification in Combinatorial Group Theory, G. Baumslag and C. F. Miller, III, Eds., MSRI Publications, Number 23, Springer-Verlag, New York, 1991, p. 121-136. Zbl0753.20007MR94f:20059
- [5] K. S. BROWN, The geometry of rewriting systems: a proof of the Anick-Groves-Squier Theorem, ibid., p. 137-163. Zbl0764.20016MR94g:20041
- [6] K. S. BROWN and R. GEOGHEGAN, An infinite-dimensional torsion-free FP∞ group, Invent. Math., 77 (1984), 367-381. Zbl0557.55009MR85m:20073
- [7] J. W. CANNON, W. J. FLOYD and W. R. PARRY, Notes on Richard Thompson's groups F and T, to appear in L'Enseignement Mathématique. Zbl0880.20027
- [8] C. G. CHEHATA, An algebraically simple ordered group, Proc. Lond. Math. Soc. (3), 2 (1952), 183-197. Zbl0046.02501MR13,817b
- [9] S. CLEARY, Groups of piecewise-linear homeomorphisms with irrational slopes, Rocky Mountain J. Math., 25 (1995), 935-955. Zbl0857.57023MR97d:20040
- [10] J. DYDAK and J. SEGAL, Shape Theory: An Introduction, Lecture Notes in Math., Number 688, Springer-Verlag, Berlin, 1978. Zbl0401.54028MR80h:54020
- [11] P. FREYD and A. HELLER, Splitting homotopy idempotents, II, J. Pure and Applied Algebra, 89 (1993), 93-106. Zbl0786.55008MR95h:55015
- [12] E. GHYS and V. SERGIESCU, Sur un groupe remarquable de difféomorphismes du cercle, preprint IHES/M/85/65, Institut des Hautes Études Scientifiques, Bures-sur-Yvette, 1985. Zbl0647.58009
- [13] E. GHYS and V. SERGIESCU, Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helvetici, 62 (1987), 185-239. Zbl0647.58009MR90c:57035
- [14] P. GREENBERG, Pseudogroups from group actions, Amer. J. Math., 109 (1987), 893-906. Zbl0644.57012MR88k:57048
- [15] P. GREENBERG, Projective aspects of the Higman-Thompson group, Group Theory from a Geometrical Viewpoint, ICTP conference, Triest, Italy, 1990, E. Ghys, A. Haefliger, A. Verjovsky, Editors, World Scientific, Singapore, 1991, p. 633-644. Zbl0860.57038MR93j:20079
- [16] P. GREENBERG and V. SERGIESCU, An acyclic extension of the braid group, Comm. Math. Helvetici, 66 (1991), 109-138. Zbl0736.20020MR92b:57004
- [17] H. M. HASTINGS and A. HELLER, Homotopy idempotents on finite-dimensional complexes split, Proc. Amer. Math. Soc., 85 (1982), 619-622. Zbl0513.55011MR83j:55010
- [18] S. H. MCCLEARY, Groups of homeomorphisms with manageable automorphism groups, Comm. in Algebra, 6 (1978), 497-528. Zbl0377.20035MR81e:20045
- [19] S. H. MCCLEARY and M. RUBIN, Locally moving groups and the reconstruction problem for chains and circles, preprint, Bowling Green State University, Bowling Green, Ohio.
- [20] R. MCKENZIE and R. J. THOMPSON, An elementary construction of unsolvable word problems in group theory, Word Problems, Boone, Cannonito and Lyndon Eds., North Holland, 1973, p. 457-478. Zbl0286.02047MR53 #629
- [21] J. N. MATHER, Integrability in codimension 1, Comment. Math. Helvetici, 48 (1973), 195-233. Zbl0284.57016MR50 #8556
- [22] E. A. SCOTT, A tour around finitely presented infinite simple groups, Algorithms and Classification in Combinatorial Group Theory, G. Baumslag and C. F. Miller, III, Eds., MSRI Publications, Number 23, Springer-Verlag, New York, 1991, p. 83-119. Zbl0753.20008MR94j:20030
- [23] M. STEIN, Groups of piecewise linear homeomorphisms, Trans. Amer. Math. Soc., 332 (1992), 477-514. Zbl0798.20025MR92k:20075
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.