Metric diophantine approximation in Julia sets of expanding rational maps
Publications Mathématiques de l'IHÉS (1997)
- Volume: 85, page 193-216
- ISSN: 0073-8301
Access Full Article
topHow to cite
topHill, Richard, and Velani, Sanju L.. "Metric diophantine approximation in Julia sets of expanding rational maps." Publications Mathématiques de l'IHÉS 85 (1997): 193-216. <http://eudml.org/doc/104119>.
@article{Hill1997,
author = {Hill, Richard, Velani, Sanju L.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {metric diophantine approximation; well-approximable point; backward orbit; Hausdorff dimension; expanding rational map; Riemann sphere; Julia set; Hölder function; conformal measures},
language = {eng},
pages = {193-216},
publisher = {Institut des Hautes Études Scientifiques},
title = {Metric diophantine approximation in Julia sets of expanding rational maps},
url = {http://eudml.org/doc/104119},
volume = {85},
year = {1997},
}
TY - JOUR
AU - Hill, Richard
AU - Velani, Sanju L.
TI - Metric diophantine approximation in Julia sets of expanding rational maps
JO - Publications Mathématiques de l'IHÉS
PY - 1997
PB - Institut des Hautes Études Scientifiques
VL - 85
SP - 193
EP - 216
LA - eng
KW - metric diophantine approximation; well-approximable point; backward orbit; Hausdorff dimension; expanding rational map; Riemann sphere; Julia set; Hölder function; conformal measures
UR - http://eudml.org/doc/104119
ER -
References
top- [1] A. F. BEARDON, Iteration of Rational Functions, Springer GTM 132, 1991. Zbl0742.30002MR92j:30026
- [2] A. S. BESICOVITCH, Sets of fractional dimension (IV): On rational approximation to real numbers, J. London Math. Soc. 9 (1934), 126-131. Zbl0009.05301JFM60.0204.01
- [3] R. BOWEN, Equilibrium States and the Ergodic Theory for Anosov Diffeomorphisms, III, Springer LNM 470, 1975. Zbl0308.28010MR56 #1364
- [4] H. BROLIN, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144. Zbl0127.03401MR33 #2805
- [5] J. W. S. CASSELS, An Introduction to Diophantine Approximation, Cambridge Univ. Press, 1957. Zbl0077.04801MR19,396h
- [6] M. DENKER, Ch. GRILLENBERGER and K. SIGMUND, Ergodic Theory on Compact Spaces, IV, Springer LNM 527, 1976. Zbl0328.28008MR56 #15879
- [7] M. DENKER and M. URBAŃSKI, Ergodic theory of equilibrium states of rational maps, Nonlinearity 4 (1991), 103-134. Zbl0718.58035MR92a:58112
- [8] K. J. FALCONER, Fractal Geometry - Mathematical Foundations and Applications, J. Wiley, Chichester, 1990. Zbl0689.28003
- [9] R. HILL and S. L. VELANI, The Ergodic Theory of Shrinking Targets, Invent. Math. 119 (1995), 175-198. Zbl0834.28009MR96e:58088
- [10] R. HILL and S. L. VELANI, Markov maps and moving, shrinking targets, in preparation. Zbl0834.28009
- [11] R. HILL and S. L. VELANI, The Shrinking Target Problem for Matrix Transformations of Tori, J. Lond. Math. Soc. (to appear). Zbl0987.37008
- [12] R. HILL and S. L. VELANI, The Jarník-Besicovitch theorem for geometrically finite Kleinian groups, Proc. Lond. Math. Soc. (to appear). Zbl0924.11063
- [13] E. HILLE, Analytic function theory, Ginn and Company: Boston - New York - Chicago - Atlanta - Dallas - Palo Alto - Toronto, 1962. Zbl0102.29401MR34 #1490
- [14] V. JARNÍK, Diophantische Approximationen und Hausdorffsches Mass, Math. Sb. 36 (1929), 371-382. Zbl55.0719.01JFM55.0719.01
- [15] V. LJUBICH, Entropy properties of rational endomorphisms of the Riemann sphere, Ergod. Th. Dynam. Sys. 3 (1983), 351-386. Zbl0537.58035MR85k:58049
- [16] M. V. MELIAN and S. L. VELANI, Geodesic excursions into cusps in infinite volume hyperbolic manifolds, Mathematica Gottingensis 45, 1993. Zbl0793.53052
- [17] W. PARRY and M. POLLICOTT, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, Soc. Math. France, 187-188, 1990. Zbl0726.58003MR92f:58141
- [18] S. J. PATTERSON, The limit set of a Fuchsian group, Acta Math. 136 (1976), 241-273. Zbl0336.30005MR56 #8841
- [19] D. RUELLE, Thermodynamical Formalism, Encycl. Math. Appl. 5, 1978. Zbl0401.28016MR80g:82017
- [20] V. G. SPRINDŽUK, Metric theory of Diophantine approximation (translated by R. A. SILVERMAN), V. H. Winston & Sons, Washington D.C., 1979. Zbl0306.10037MR80k:10048
- [21] D. SULLIVAN, Conformal Dynamical Systems, in Proc. Conf. on Geometric Dynamics, Rio de Janeiro, 1981, Springer LNM 1007, 725-752. Zbl0524.58024MR85m:58112
- [22] P. WALTERS, A variational principle for the pressure of continuous transformations, Am. J. Math. 97 (1975), 937-971. Zbl0318.28007MR52 #11006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.