Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings

Bruce Kleiner; Bernhard Leeb

Publications Mathématiques de l'IHÉS (1997)

  • Volume: 86, page 115-197
  • ISSN: 0073-8301

How to cite


Kleiner, Bruce, and Leeb, Bernhard. "Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings." Publications Mathématiques de l'IHÉS 86 (1997): 115-197. <http://eudml.org/doc/104123>.

author = {Kleiner, Bruce, Leeb, Bernhard},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {quasi-isometric classification of symmetric spaces; Mostow rigidity theorem; Euclidean buildings; curvature},
language = {eng},
pages = {115-197},
publisher = {Institut des Hautes Études Scientifiques},
title = {Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings},
url = {http://eudml.org/doc/104123},
volume = {86},
year = {1997},

AU - Kleiner, Bruce
AU - Leeb, Bernhard
TI - Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings
JO - Publications Mathématiques de l'IHÉS
PY - 1997
PB - Institut des Hautes Études Scientifiques
VL - 86
SP - 115
EP - 197
LA - eng
KW - quasi-isometric classification of symmetric spaces; Mostow rigidity theorem; Euclidean buildings; curvature
UR - http://eudml.org/doc/104123
ER -


  1. [ABN] A. D. ALEKSANDROV, V. N. BERESTOVSKIJ, I. G. NIKOLAEV, Generalized Riemannian Spaces, Russ. Math. Surveys 41, no. 3 (1986), 1-54. Zbl0625.53059MR88e:53103
  2. [AS] M. T. ANDERSON and V. SCHROEDER, Existence of flats in manifolds of nonpositive curvature, Invent. Math. 85 (1986), no. 2, 303-315. Zbl0615.53030MR87h:53049
  3. [Ba] W. BALLMANN, Lectures on spaces of nonpositive curvature, preprint 1995. Zbl0834.53003MR97a:53053
  4. [BGS] W. BALLMANN, M. GROMOV, V. SCHROEDER, Manifolds of nonpositive curvature, Birkhäuser, 1985. Zbl0591.53001MR87h:53050
  5. [Brbk] N. BOURBAKI, Groupes et Algèbres de Lie, ch. 4-6, Paris, Masson, 1981. Zbl0483.22001
  6. [Brn1] K. BROWN, Buildings, Springer, 1989. Zbl0715.20017MR90e:20001
  7. [Brn2] K. BROWN, Five lectures on Buildings, p. 254-295, in Group theory from a geometric viewpoint, Trieste, 1990. Zbl0846.20032MR94b:51017
  8. [BT] F. BRUHAT and J. TITS, Groupes réductifs sur un corps local, Publ. Math. IHES 60 (1984), 5-184. Zbl0597.14041MR86c:20042
  9. [ChE] J. CHEEGER and D. EBIN, Comparison theorems in Riemannian geometry, North Holland, 1975. Zbl0309.53035MR56 #16538
  10. [DW] L. VAN DEN DRIES, A. J. WILKIE, On Gromov's Theorem concerning groups of polynomial growth and elementary logic, J. of Algebra 89 (1984), 349-374. Zbl0552.20017MR85k:20101
  11. [Eb] P. EBERLEIN, Structure of manifolds of nonpositive curvature, in Springer LNM, vol. 1156 (1985), 86-153. Zbl0569.53020MR87d:53080
  12. [Gro] M. GROMOV, Asymptotic invariants for infinite groups, in Geometric group theory, London Math. Soc. Lecture Notes Series 182 (1993), vol. 2. Zbl0841.20039MR95m:20041
  13. [GrPa] M. GROMOV and P. PANSU, Rigidity of lattices : An introduction, in Geometric Topology : Recent developments, Springer LNM 1504 (1991), 39-137. Zbl0786.22015MR93f:53036
  14. [GrBe] L. C. GROVE and C. T. BENSON, Finite reflection groups, Springer GTM 99, sec. ed., 1985. Zbl0579.20045MR85m:20001
  15. [Hum] J. E. HUMPHREYS, Reflection groups and Coxeter groups, Cambridge studies in advanced mathematics 29, Cambridge Univ. Press, 1990. Zbl0725.20028MR92h:20002
  16. [KKL] M. KAPOVICH, B. KLEINER and B. LEEB, Quasi-isometries preserve the de Rham decomposition, to appear in Topology. Zbl0954.53027
  17. [KaLe] M. KAPOVICH and B. LEEB, Asymptotic cones and quasi-isometry classes of fundamental groups of 3-manifolds, GAFA, vol. 5, no. 3 (1995), 582-603. Zbl0829.57006MR96e:57006
  18. [KlLe1] B. KLEINER and B. LEEB, Rigidity of quasi-isometries for symmetric spaces of higher rank, Preprint, January 1995. 
  19. [KlLe2] B. KLEINER and B. LEEB, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, C. R. Acad. Sci. Paris, Série I, 324 (1997), 639-643. Zbl0882.53037MR98f:53046
  20. [KlLe3] B. KLEINER and B. LEEB, Groups quasi-isometric to symmetric spaces, Preprint, October 1996. Zbl1035.53073
  21. [Le] B. LEEB, A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry, Habilitationsschrift, Universität Bonn, Juni 1997. Zbl1005.53031
  22. [Mos] G. D. MOSTOW, Strong rigidity of locally symmetric spaces, Ann. of Math. Studies, vol. 78, 1973. Zbl0265.53039MR52 #5874
  23. [Nik] I. NIKOLAEV, The tangent cone of an Aleksandrov space of curvature ≤ K, to appear in Manuscripta Mathematica. Zbl0822.53043
  24. [Pan] P. PANSU, Métriques de Carnot-Carathéodory et quasi-isométries des espaces symétriques de rang un, Ann. of Math. 129 (1989), 1-60. Zbl0678.53042MR90e:53058
  25. [Ron] M. RONAN, Lectures on Buildings, Perspectives in Mathematics, vol. 7, Academic Press, 1989. Zbl0694.51001MR90j:20001
  26. [Sch] R. SCHWARTZ, Quasi-Isometric Rigidity and Diophantine Approximation, Acta Mathematica 177 (1996), 75-112. Zbl1029.11038MR97m:53093
  27. [Ti1] J. TITS, Buildings of spherical type and finite BN-pairs, Springer LNM, vol. 386 (1974). Zbl0295.20047MR57 #9866
  28. [Ti2] J. TITS, Immeubles de type affine, in Buildings and the geometry of diagrams, Proceedings Como, 1984, Springer LNM, vol. 1181 (1986), 159-190. Zbl0611.20026MR87h:20077
  29. [Thu] W. THURSTON, The geometry and topology of 3-manifolds, Lecture notes, Princeton University, 1979. 
  30. [Tuk] P. TUKIA, Quasiconformal extension of quasisymmetric mappings compatible with a Möbius group, Acta. Math. 154 (1985), 153-193. Zbl0562.30018MR86f:30024

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.