Hyperbolic groups with low-dimensional boundary

Michael Kapovich; Bruce Kleiner

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 5, page 647-669
  • ISSN: 0012-9593

How to cite

top

Kapovich, Michael, and Kleiner, Bruce. "Hyperbolic groups with low-dimensional boundary." Annales scientifiques de l'École Normale Supérieure 33.5 (2000): 647-669. <http://eudml.org/doc/82530>.

@article{Kapovich2000,
author = {Kapovich, Michael, Kleiner, Bruce},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {group boundaries; torsion-free hyperbolic groups; Menger curves; Sierpiński carpets; quasi-convex subgroups; hyperbolic Poincaré duality groups},
language = {eng},
number = {5},
pages = {647-669},
publisher = {Elsevier},
title = {Hyperbolic groups with low-dimensional boundary},
url = {http://eudml.org/doc/82530},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Kapovich, Michael
AU - Kleiner, Bruce
TI - Hyperbolic groups with low-dimensional boundary
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 5
SP - 647
EP - 669
LA - eng
KW - group boundaries; torsion-free hyperbolic groups; Menger curves; Sierpiński carpets; quasi-convex subgroups; hyperbolic Poincaré duality groups
UR - http://eudml.org/doc/82530
ER -

References

top
  1. [1] ALONSO J.M., BRADY T., COOPER D., DELZANT T., FERLINI V., LUSTIG M., MIHALIK M., SHAPIRO M., SHORT H., Notes on negatively curved groups, Preprint, 1989. Zbl0849.20023
  2. [2] ANDERSON R.D., A characterization of the universal curve and a proof of its homogeneity, Ann. Math. 67 (1958) 313-324. Zbl0083.17607MR20 #2675
  3. [3] ANDERSON R.D., One-dimensional continuous curves and a homogeneity theorem, Ann. Math. 68 (1958) 1-16. Zbl0083.17608MR20 #2676
  4. [4] ANDREEV E., On convex polyhedra in Lobachevsky space, Math. USSR Sbornik 10 (1970) 413-440. Zbl0217.46801
  5. [5] BENAKLI N., Groupes hyperboliques de bord la courbe de Menger ou la courbe de Sierpinski, Preprint, Paris, 1991. 
  6. [6] BESTVINA M., Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 71 (380) (1988). Zbl0645.54029MR89g:54083
  7. [7] BESTVINA M., Local homology properties of boundaries of groups, Mich. Math. J. 43 (1) (1996) 123-139. Zbl0872.57005MR97a:57022
  8. [8] BESTVINA M., FEIGHN M., Bounding the complexity of group actions on trees, Invent. Math. 103 (1991) 449-469. Zbl0724.20019MR92c:20044
  9. [9] BESTVINA M., FEIGHN M., A combination theorem for hyperbolic groups, J. Differential Geom. 35 (1992) 85-101. Zbl0724.57029MR93d:53053
  10. [10] BESTVINA M., FEIGHN M., Addendum and correction to : “A combination theorem for negatively curved groups”, J. Differential Geom. 43 (1996) 783-788. Zbl0862.57027MR97h:53045
  11. [11] BESTVINA M., MESS G., The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991) 469-481. Zbl0767.20014MR93j:20076
  12. [12] BOWDITCH B.H., Notes on Gromov's hyperbolicity criterion for path-metric spaces, in : Ghys E., Haefliger A., Verjovsky A. (Eds.), Group Theory from a Geometrical Point of View (ICTP, Trieste, April 1990), 1991, pp. 64-167. Zbl0843.20031MR93h:57002
  13. [13] BOWDITCH B.H., Connectedness properties of limit sets, Trans. Amer. Math. Soc. 351 (1999) 3673-3686. Zbl0938.20033MR2000d:20056
  14. [14] BOWDITCH B.H., A topological characterization of hyperbolic groups, J. Amer. Math. Soc. 11 (3) (1998) 643-667. Zbl0906.20022MR99c:20048
  15. [15] BOWDITCH B.H., Convergence groups and configuration spaces, in : Proceedings of the Camberra Group Theory Conference, 1996 (to appear). Zbl0952.20032
  16. [16] CASSON A., BLEILER S., Automorphisms of Surfaces After Nielsen and Thurston, Cambridge Univ. Press, 1983. Zbl0649.57008
  17. [17] CASSON A., JUNGREIS D., Convergence groups and Seifert fibered 3-manifolds, Invent. Math. 118 (F. 3) (1994) 441-456. Zbl0840.57005MR96f:57011
  18. [18] CHAMPETIER C., Propriétés statistiques des groupes de presentation finie, Adv. Math. 116 (1995) 197-262. Zbl0847.20030MR96m:20056
  19. [19] CLAYTOR S., Topological immersion of Peanian continua in the spherical surface, Ann. Math. 35 (1924) 809-835. Zbl0010.27602JFM60.0510.01
  20. [20] DAVIS M., JANUSZKIEWICZ T., Hyperbolization of polyhedra, J. Differential Geom. 34 (1991) 347-388. Zbl0723.57017MR92h:57036
  21. [21] DRANISHNIKOV A., (private communication). 
  22. [22] DICKS W., DUNWOODY M., Groups Acting on Graphs, Cambridge Studies in Advanced Mathematics, Vol. 17, 1989. Zbl0665.20001MR91b:20001
  23. [23] EBERLEIN P., O'NEILL B., Visibility manifolds, Pacific J. Math. 46 (1973) 45-109. Zbl0264.53026MR49 #1421
  24. [24] GABAI D., Convergence groups are Fuchsian groups, Ann. Math. 136 (1992) 447-510. Zbl0785.57004MR93m:20065
  25. [25] GHYS E., DE LA HARPE P., Sur les Groupes Hyperbolic d'Apres Mikhael Gromov, Progress in Mathematics, Vol. 83, Birkhäuser, 1990. Zbl0731.20025
  26. [26] GROMOV M., Hyperbolic groups, in : Essays in Group Theory, Publications of MSRI, Vol. 8, 1987, pp. 75-264. Zbl0634.20015MR89e:20070
  27. [27] HEMPEL J., Residual finiteness for 3-manifolds, in : Combinatorial Group Theory and Topology (Alta, Utah, 1984), Annals of Math. Studies, Vol. 111, Princeton Univ. Press, 1987, pp. 379-396. Zbl0772.57002MR89b:57002
  28. [28] JACO W., SHALEN P., Seifert fibred spaces in 3-manifolds, Mem. Amer. Math. Soc. 220 (1979). Zbl0415.57005
  29. [29] JOHANNSON K., Homotopy-equivalences of 3-Manifolds with Boundary, Lect. Notes in Math., Vol. 761, Springer-Verlag, 1979. Zbl0412.57007MR82c:57005
  30. [30] KAPOVICH M., Deformations of representations of discrete subgroups of SO(3,1), Math. Ann. 299 (1994) 341-354. Zbl0828.57009MR95d:57010
  31. [31] KAPOVICH M., KLEINER B., Coarse Alexander duality and duality groups, Preprint, 1999. Zbl1086.57019
  32. [32] KLEINER B., LEEB B., Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Math. Publ. of Inst. Hautes Études Sci. 86 (1997) 115-197. Zbl0910.53035MR98m:53068
  33. [33] MITRA M., Height in splittings of hyperbolic groups, Preprint, 1997. Zbl1059.20040
  34. [34] MOISE E.E., Remarks on the Claytor embedding theorem, Duke Math. J. 19 (1952) 199-202. Zbl0046.40304MR14,396f
  35. [35] PANSU P., Métriques de Carnot-Carathéodory et quasi-isométries des espaces symétriques de rang un, Ann. Math. 129 (1989) 1-60. Zbl0678.53042MR90e:53058
  36. [36] RIPS E., Subgroups of small cancellation groups, Bull. London Math. Soc. 14 (1982) 45-47. Zbl0481.20020MR83c:20049
  37. [37] SCHWARTZ R., The quasi-isometry classification of rank one lattices, Math. Publ. of Inst. Hautes Études Sci. 82 (1995) 133-168. Zbl0852.22010MR97c:22014
  38. [38] SCOTT P., The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983) 401-487. Zbl0561.57001MR84m:57009
  39. [39] SCOTT P., WALL T., Topological methods in group theory, in : Homological Group Theory, London Math. Soc. Lecture Notes, Vol. 36, 1979, pp. 137-204. Zbl0423.20023MR81m:57002
  40. [40] STALLINGS J., On torsion-free groups with infinitely many ends, Ann. Math. 88 (1968) 312-334. Zbl0238.20036MR37 #4153
  41. [41] SWARUP G.A., On the cut-point conjecture, Electronic Research Announcements of Amer. Math. Soc. 2 (1996) 98-100. Zbl0868.20032MR97f:20048
  42. [42] SWARUP G.A., Proof of a weak hyperbolization theorem, Preprint, 1998. Zbl0965.57012
  43. [43] TUKIA P., Homeomorphic conjugates of fuchsian groups, J. Reine Angew. Math. 391 (1988) 1-54. Zbl0644.30027MR89m:30047
  44. [44] TUKIA P., Convergence groups and Gromov's metric hyperbolic spaces, New Zealand J. Math. 23 (2) (1994) 157-187. Zbl0855.30036MR96c:30042
  45. [45] WHYBURN G.T., Topological characterization of the Sierpinski curve, Fundamenta Math. 45 (1958) 320-324. Zbl0081.16904MR20 #6077

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.