Hyperbolic groups with low-dimensional boundary
Michael Kapovich; Bruce Kleiner
Annales scientifiques de l'École Normale Supérieure (2000)
- Volume: 33, Issue: 5, page 647-669
- ISSN: 0012-9593
Access Full Article
topHow to cite
topKapovich, Michael, and Kleiner, Bruce. "Hyperbolic groups with low-dimensional boundary." Annales scientifiques de l'École Normale Supérieure 33.5 (2000): 647-669. <http://eudml.org/doc/82530>.
@article{Kapovich2000,
author = {Kapovich, Michael, Kleiner, Bruce},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {group boundaries; torsion-free hyperbolic groups; Menger curves; Sierpiński carpets; quasi-convex subgroups; hyperbolic Poincaré duality groups},
language = {eng},
number = {5},
pages = {647-669},
publisher = {Elsevier},
title = {Hyperbolic groups with low-dimensional boundary},
url = {http://eudml.org/doc/82530},
volume = {33},
year = {2000},
}
TY - JOUR
AU - Kapovich, Michael
AU - Kleiner, Bruce
TI - Hyperbolic groups with low-dimensional boundary
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 5
SP - 647
EP - 669
LA - eng
KW - group boundaries; torsion-free hyperbolic groups; Menger curves; Sierpiński carpets; quasi-convex subgroups; hyperbolic Poincaré duality groups
UR - http://eudml.org/doc/82530
ER -
References
top- [1] ALONSO J.M., BRADY T., COOPER D., DELZANT T., FERLINI V., LUSTIG M., MIHALIK M., SHAPIRO M., SHORT H., Notes on negatively curved groups, Preprint, 1989. Zbl0849.20023
- [2] ANDERSON R.D., A characterization of the universal curve and a proof of its homogeneity, Ann. Math. 67 (1958) 313-324. Zbl0083.17607MR20 #2675
- [3] ANDERSON R.D., One-dimensional continuous curves and a homogeneity theorem, Ann. Math. 68 (1958) 1-16. Zbl0083.17608MR20 #2676
- [4] ANDREEV E., On convex polyhedra in Lobachevsky space, Math. USSR Sbornik 10 (1970) 413-440. Zbl0217.46801
- [5] BENAKLI N., Groupes hyperboliques de bord la courbe de Menger ou la courbe de Sierpinski, Preprint, Paris, 1991.
- [6] BESTVINA M., Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 71 (380) (1988). Zbl0645.54029MR89g:54083
- [7] BESTVINA M., Local homology properties of boundaries of groups, Mich. Math. J. 43 (1) (1996) 123-139. Zbl0872.57005MR97a:57022
- [8] BESTVINA M., FEIGHN M., Bounding the complexity of group actions on trees, Invent. Math. 103 (1991) 449-469. Zbl0724.20019MR92c:20044
- [9] BESTVINA M., FEIGHN M., A combination theorem for hyperbolic groups, J. Differential Geom. 35 (1992) 85-101. Zbl0724.57029MR93d:53053
- [10] BESTVINA M., FEIGHN M., Addendum and correction to : “A combination theorem for negatively curved groups”, J. Differential Geom. 43 (1996) 783-788. Zbl0862.57027MR97h:53045
- [11] BESTVINA M., MESS G., The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991) 469-481. Zbl0767.20014MR93j:20076
- [12] BOWDITCH B.H., Notes on Gromov's hyperbolicity criterion for path-metric spaces, in : Ghys E., Haefliger A., Verjovsky A. (Eds.), Group Theory from a Geometrical Point of View (ICTP, Trieste, April 1990), 1991, pp. 64-167. Zbl0843.20031MR93h:57002
- [13] BOWDITCH B.H., Connectedness properties of limit sets, Trans. Amer. Math. Soc. 351 (1999) 3673-3686. Zbl0938.20033MR2000d:20056
- [14] BOWDITCH B.H., A topological characterization of hyperbolic groups, J. Amer. Math. Soc. 11 (3) (1998) 643-667. Zbl0906.20022MR99c:20048
- [15] BOWDITCH B.H., Convergence groups and configuration spaces, in : Proceedings of the Camberra Group Theory Conference, 1996 (to appear). Zbl0952.20032
- [16] CASSON A., BLEILER S., Automorphisms of Surfaces After Nielsen and Thurston, Cambridge Univ. Press, 1983. Zbl0649.57008
- [17] CASSON A., JUNGREIS D., Convergence groups and Seifert fibered 3-manifolds, Invent. Math. 118 (F. 3) (1994) 441-456. Zbl0840.57005MR96f:57011
- [18] CHAMPETIER C., Propriétés statistiques des groupes de presentation finie, Adv. Math. 116 (1995) 197-262. Zbl0847.20030MR96m:20056
- [19] CLAYTOR S., Topological immersion of Peanian continua in the spherical surface, Ann. Math. 35 (1924) 809-835. Zbl0010.27602JFM60.0510.01
- [20] DAVIS M., JANUSZKIEWICZ T., Hyperbolization of polyhedra, J. Differential Geom. 34 (1991) 347-388. Zbl0723.57017MR92h:57036
- [21] DRANISHNIKOV A., (private communication).
- [22] DICKS W., DUNWOODY M., Groups Acting on Graphs, Cambridge Studies in Advanced Mathematics, Vol. 17, 1989. Zbl0665.20001MR91b:20001
- [23] EBERLEIN P., O'NEILL B., Visibility manifolds, Pacific J. Math. 46 (1973) 45-109. Zbl0264.53026MR49 #1421
- [24] GABAI D., Convergence groups are Fuchsian groups, Ann. Math. 136 (1992) 447-510. Zbl0785.57004MR93m:20065
- [25] GHYS E., DE LA HARPE P., Sur les Groupes Hyperbolic d'Apres Mikhael Gromov, Progress in Mathematics, Vol. 83, Birkhäuser, 1990. Zbl0731.20025
- [26] GROMOV M., Hyperbolic groups, in : Essays in Group Theory, Publications of MSRI, Vol. 8, 1987, pp. 75-264. Zbl0634.20015MR89e:20070
- [27] HEMPEL J., Residual finiteness for 3-manifolds, in : Combinatorial Group Theory and Topology (Alta, Utah, 1984), Annals of Math. Studies, Vol. 111, Princeton Univ. Press, 1987, pp. 379-396. Zbl0772.57002MR89b:57002
- [28] JACO W., SHALEN P., Seifert fibred spaces in 3-manifolds, Mem. Amer. Math. Soc. 220 (1979). Zbl0415.57005
- [29] JOHANNSON K., Homotopy-equivalences of 3-Manifolds with Boundary, Lect. Notes in Math., Vol. 761, Springer-Verlag, 1979. Zbl0412.57007MR82c:57005
- [30] KAPOVICH M., Deformations of representations of discrete subgroups of SO(3,1), Math. Ann. 299 (1994) 341-354. Zbl0828.57009MR95d:57010
- [31] KAPOVICH M., KLEINER B., Coarse Alexander duality and duality groups, Preprint, 1999. Zbl1086.57019
- [32] KLEINER B., LEEB B., Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Math. Publ. of Inst. Hautes Études Sci. 86 (1997) 115-197. Zbl0910.53035MR98m:53068
- [33] MITRA M., Height in splittings of hyperbolic groups, Preprint, 1997. Zbl1059.20040
- [34] MOISE E.E., Remarks on the Claytor embedding theorem, Duke Math. J. 19 (1952) 199-202. Zbl0046.40304MR14,396f
- [35] PANSU P., Métriques de Carnot-Carathéodory et quasi-isométries des espaces symétriques de rang un, Ann. Math. 129 (1989) 1-60. Zbl0678.53042MR90e:53058
- [36] RIPS E., Subgroups of small cancellation groups, Bull. London Math. Soc. 14 (1982) 45-47. Zbl0481.20020MR83c:20049
- [37] SCHWARTZ R., The quasi-isometry classification of rank one lattices, Math. Publ. of Inst. Hautes Études Sci. 82 (1995) 133-168. Zbl0852.22010MR97c:22014
- [38] SCOTT P., The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983) 401-487. Zbl0561.57001MR84m:57009
- [39] SCOTT P., WALL T., Topological methods in group theory, in : Homological Group Theory, London Math. Soc. Lecture Notes, Vol. 36, 1979, pp. 137-204. Zbl0423.20023MR81m:57002
- [40] STALLINGS J., On torsion-free groups with infinitely many ends, Ann. Math. 88 (1968) 312-334. Zbl0238.20036MR37 #4153
- [41] SWARUP G.A., On the cut-point conjecture, Electronic Research Announcements of Amer. Math. Soc. 2 (1996) 98-100. Zbl0868.20032MR97f:20048
- [42] SWARUP G.A., Proof of a weak hyperbolization theorem, Preprint, 1998. Zbl0965.57012
- [43] TUKIA P., Homeomorphic conjugates of fuchsian groups, J. Reine Angew. Math. 391 (1988) 1-54. Zbl0644.30027MR89m:30047
- [44] TUKIA P., Convergence groups and Gromov's metric hyperbolic spaces, New Zealand J. Math. 23 (2) (1994) 157-187. Zbl0855.30036MR96c:30042
- [45] WHYBURN G.T., Topological characterization of the Sierpinski curve, Fundamenta Math. 45 (1958) 320-324. Zbl0081.16904MR20 #6077
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.