On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties
Michael Kapovich; John J. Millson
Publications Mathématiques de l'IHÉS (1998)
- Volume: 88, page 5-95
- ISSN: 0073-8301
Access Full Article
topHow to cite
topKapovich, Michael, and Millson, John J.. "On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties." Publications Mathématiques de l'IHÉS 88 (1998): 5-95. <http://eudml.org/doc/104136>.
@article{Kapovich1998,
author = {Kapovich, Michael, Millson, John J.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Artin groups; representation varieties; projective arrangements; fundamental groups of algebraic varieties},
language = {eng},
pages = {5-95},
publisher = {Institut des Hautes Études Scientifiques},
title = {On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties},
url = {http://eudml.org/doc/104136},
volume = {88},
year = {1998},
}
TY - JOUR
AU - Kapovich, Michael
AU - Millson, John J.
TI - On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties
JO - Publications Mathématiques de l'IHÉS
PY - 1998
PB - Institut des Hautes Études Scientifiques
VL - 88
SP - 5
EP - 95
LA - eng
KW - Artin groups; representation varieties; projective arrangements; fundamental groups of algebraic varieties
UR - http://eudml.org/doc/104136
ER -
References
top- [AK] S. AKBULUT, H. KING, Topology of Real Algebraic Sets, MSRI Publications, 25 (1992), Springer-Verlag. Zbl0808.14045MR94m:57001
- [ABC] J. AMOROS, M. BURGER, K. CORLETTE, D. KOTSCHICK, D. TOLEDO, Fundamental groups of Kähler manifolds, AMS Mathematical Surveys and Monographs, 44, 1996. Zbl0849.32006MR97d:32037
- [AN] D. ARAPURA, M. NORI, Solvable fundamental groups of algebraic varieties and Kähler manifolds, Preprint, June 1997. Zbl0971.14020
- [A1] V. I. ARNOLD, Normal forms of functions in neighborhoods of degenerate critical points, In: Lecture Notes of London Math. Soc., 53 (1981), Singularity Theory, 91-131. MR83d:58016
- [A2] V. I. ARNOLD, Critical points of smooth functions and their normal forms, In: Lecture Notes of London Math. Soc., 53 (1981), Singularity Theory, 132-206. MR83d:58016
- [Ar] M. ARTIN, On the solutions of analytic equations, Invent. Math., 5 (1968), 277-291. Zbl0172.05301MR38 #344
- [AM] M. ATIYAH, I. MACDONALD, Introduction to Commutative Algebra, Addison-Wesley, 1969. Zbl0175.03601MR39 #4129
- [BiM] E. BIERSTONE, P. MILLMAN, Canonical desingularization in characteristic zero by blowing up maximal strata of a local invariant, Inventiones Math., 128 (1997), 207-320. Zbl0896.14006
- [Bo] N. BOURBAKI, Groupes et algèbres de Lie, Chap. 4 à 6, Masson, 1981. Zbl0483.22001
- [BuM] R. O. BUCHWEITZ, J. J. MILLSON, CR-geometry and deformations of isolated singularities, Memoirs of AMS, 125, N 597 (1997). Zbl0871.32023MR97g:32045
- [B] E. BRIESKORN, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Inventiones Math., 12 (1971), 57-61. Zbl0204.56502MR45 #2692
- [BS] E. BRIESKORN, K. SAITO, Artin-Gruppen und Coxeter-Gruppen, Inventiones Math., 17 (1972), 245-271. Zbl0243.20037MR48 #2263
- [C] H. S. M. COXETER, Finite unitary groups generated by reflections, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 31 (1967), 125-135. Zbl0189.32302MR37 #6358
- [D1] P. DELIGNE, Théorie de Hodge II, Publications Math. IHES, 40 (1971), 5-58. Zbl0219.14007MR58 #16653a
- [D2] P. DELIGNE, Théorie de Hodge III, Publications Math. IHES, 44 (1974), 5-77. Zbl0237.14003MR58 #16653b
- [DGMS] P. DELIGNE, P. GRIFFTTH, J. MORGAN, D. SULLIVAN, Real homotopy theory of Kähler manifolds, Inventiones Math., 29 (1975), 245-274. Zbl0312.55011
- [DG] M. DEMAZURE, P. GABRIEL, Groupes algébriques: Vol. I. Géométrie algébrique, généralités, groupes commutatifs, Paris, Masson, 1970. Zbl0203.23401
- [Di] A. DIMCA, Topics on Real and Complex Singularities, Advanced Lectures in Mathematics, Vieweg, 1987. Zbl0628.14001MR92d:32048
- [EH] D. EISENBUD, J. HARRIS, Schemes: the language of the modern algebraic geometry, Wadsworth & Brooks/Cole Math. Series, 1992. Zbl0745.14002
- [EN] D. EISENBUD, W. NEUMANN, Three-dimensional link theory and invariants of plane curve singularities, Ann. of Math. Stud., Princeton Univ. Press, 110 (1985). Zbl0628.57002MR87g:57007
- [GM] W. GOLDMAN, J. J. MILLSON, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Publications Math. IHES, 67 (1988), 43-96. Zbl0678.53059MR90b:32041
- [GrM] P. GRIFFITHS, J. MORGAN, Rational homotopy theory and differential forms, Progress in Mathematics, Birkhäuser, 1981. Zbl0474.55001MR82m:55014
- [Hai] R. HAIN, in preparation.
- [H] R. HARTSHORNE, Foundations of Projective Geometry, Benjamin Inc., NY, 1967. Zbl0152.38702MR36 #5801
- [JM] D. JONHSON, J. J. MILLSON, Deformation spaces associated to compact hyperbolic manifolds, In: Discrete Groups in Geometry and Analysis, Papers in honor of G. D. Mostow on his 60-th birthday, R. Howe (ed.), Progress in Mathematics, 67 (1987), Birkhäuser, 48-106. Zbl0664.53023MR88j:22010
- [KM1] M. KAPOVICH, J. J. MILLSON, The relative deformation theory of representations and flat connections and deformations of linkages in constant curvature spaces, Compositio Math., 103 (1996), 287-317. Zbl0872.53035MR97i:58184
- [KM2] M. KAPOVICH, J. J. MILLSON, On the deformation theory of representations of fundamental groups of closed hyperbolic 3-manifolds, Topology, 35 (1996), 1085-1106. Zbl0855.32013MR97h:57029
- [KM3] M. KAPOVICH, J. J. MILLSON, Hodge theory and the art of paper folding, Publications of RIMS, Kyoto, 33 (1997), 1-33. Zbl0961.32026MR98a:58028
- [KM4] M. KAPOVICH, J. J. MILLSON, Moduli Spaces of Linkages and Arrangements, In: Advances in Geometry, J.-L. Brylinski (ed.), Progress in Mathematics, 172 (1999), Birkhäuser, 237-270. Zbl0936.14010MR2000g:14019
- [KM5] M. KAPOVICH, J. J. MILLSON, Universality theorems for configuration spaces of planar linkages, Preprint, 1998. Zbl1056.14077
- [Ke] A. B. KEMPE, On a general method of describing plane curves of the n-th degree by linkwork, Proc. London Math. Soc., 7 (1875), 213-216. Zbl08.0544.04JFM08.0544.04
- [Le] H. van der LEK, Extended Artin groups, Proc. of Symp. in Pure Math., 40 (1983), Part 2, p. 117-121. Zbl0523.14005MR85b:14005
- [Lo] E. LOOIJENGA, Invariant theory for generalized root systems, Inventiones Math., 61 (1980), 1-32. Zbl0436.17005MR82f:17011
- [LM] A. LUBOTZKY, A. MAGID, Varieties of representations for finitely generated groups, Memoirs of AMS, 336 (1985), N 5. Zbl0598.14042MR87c:20021
- [Mi] J. J. MILLSON, Rational homotopy theory and deformation problems from algebraic geometry, Proc. of ICM 1990, I, p. 549-558. Zbl0761.32011MR93b:14008a
- [Mn] N. MNËV, The universality theorems on the classification problem of configuration varieties and convex polytopes varieties, Lecture Notes in Math., 1346 (1988), 527-543. Zbl0667.52006MR90a:52013
- [Mo1] J. MORGAN, Hodge theory for the algebraic topology of smooth algebraic varieties, Proc. Symp. in Pure Math., 32 (1978), 119-127. Zbl0417.14005MR80g:32013
- [Mo2] J. MORGAN, The algebraic topology of smooth algebraic varieties, Publications Math. IHES, 48 (1978), 137-204. Zbl0401.14003MR80e:55020
- [N] P. E. NEWSTEAD, Introduction to Moduli Problems and Orbit Spaces, Tata Institute Lecture Notes, 1978. Zbl0411.14003MR81k:14002
- [Sh] G. SHEPHARD, Regular complex polytopes, Proc. London Math. Soc., 2 (1952), 82-97. Zbl0047.14106MR13,968k
- [Si] C. SIMPSON, Higgs bundles and local systems, Publications Math. IHES, 75 (1992), 5-95. Zbl0814.32003MR94d:32027
- [St] K. G. C. von STAUDT, Beiträge zur Geometre der Lage, Heft 2, 1857.
- [Su1] D. SULLIVAN, Infinitesimal computations in topology, Publications Math. IHES, 47 (1977), 269-331. Zbl0374.57002MR58 #31119
- [Sum] H. SUMIHIRO, Equivariant completion, J. Math. Kyoto Univ., 14 (1974), 1-28; 15 (1975), 573-605. Zbl0277.14008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.