On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties

Michael Kapovich; John J. Millson

Publications Mathématiques de l'IHÉS (1998)

  • Volume: 88, page 5-95
  • ISSN: 0073-8301

How to cite

top

Kapovich, Michael, and Millson, John J.. "On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties." Publications Mathématiques de l'IHÉS 88 (1998): 5-95. <http://eudml.org/doc/104136>.

@article{Kapovich1998,
author = {Kapovich, Michael, Millson, John J.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Artin groups; representation varieties; projective arrangements; fundamental groups of algebraic varieties},
language = {eng},
pages = {5-95},
publisher = {Institut des Hautes Études Scientifiques},
title = {On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties},
url = {http://eudml.org/doc/104136},
volume = {88},
year = {1998},
}

TY - JOUR
AU - Kapovich, Michael
AU - Millson, John J.
TI - On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties
JO - Publications Mathématiques de l'IHÉS
PY - 1998
PB - Institut des Hautes Études Scientifiques
VL - 88
SP - 5
EP - 95
LA - eng
KW - Artin groups; representation varieties; projective arrangements; fundamental groups of algebraic varieties
UR - http://eudml.org/doc/104136
ER -

References

top
  1. [AK] S. AKBULUT, H. KING, Topology of Real Algebraic Sets, MSRI Publications, 25 (1992), Springer-Verlag. Zbl0808.14045MR94m:57001
  2. [ABC] J. AMOROS, M. BURGER, K. CORLETTE, D. KOTSCHICK, D. TOLEDO, Fundamental groups of Kähler manifolds, AMS Mathematical Surveys and Monographs, 44, 1996. Zbl0849.32006MR97d:32037
  3. [AN] D. ARAPURA, M. NORI, Solvable fundamental groups of algebraic varieties and Kähler manifolds, Preprint, June 1997. Zbl0971.14020
  4. [A1] V. I. ARNOLD, Normal forms of functions in neighborhoods of degenerate critical points, In: Lecture Notes of London Math. Soc., 53 (1981), Singularity Theory, 91-131. MR83d:58016
  5. [A2] V. I. ARNOLD, Critical points of smooth functions and their normal forms, In: Lecture Notes of London Math. Soc., 53 (1981), Singularity Theory, 132-206. MR83d:58016
  6. [Ar] M. ARTIN, On the solutions of analytic equations, Invent. Math., 5 (1968), 277-291. Zbl0172.05301MR38 #344
  7. [AM] M. ATIYAH, I. MACDONALD, Introduction to Commutative Algebra, Addison-Wesley, 1969. Zbl0175.03601MR39 #4129
  8. [BiM] E. BIERSTONE, P. MILLMAN, Canonical desingularization in characteristic zero by blowing up maximal strata of a local invariant, Inventiones Math., 128 (1997), 207-320. Zbl0896.14006
  9. [Bo] N. BOURBAKI, Groupes et algèbres de Lie, Chap. 4 à 6, Masson, 1981. Zbl0483.22001
  10. [BuM] R. O. BUCHWEITZ, J. J. MILLSON, CR-geometry and deformations of isolated singularities, Memoirs of AMS, 125, N 597 (1997). Zbl0871.32023MR97g:32045
  11. [B] E. BRIESKORN, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Inventiones Math., 12 (1971), 57-61. Zbl0204.56502MR45 #2692
  12. [BS] E. BRIESKORN, K. SAITO, Artin-Gruppen und Coxeter-Gruppen, Inventiones Math., 17 (1972), 245-271. Zbl0243.20037MR48 #2263
  13. [C] H. S. M. COXETER, Finite unitary groups generated by reflections, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 31 (1967), 125-135. Zbl0189.32302MR37 #6358
  14. [D1] P. DELIGNE, Théorie de Hodge II, Publications Math. IHES, 40 (1971), 5-58. Zbl0219.14007MR58 #16653a
  15. [D2] P. DELIGNE, Théorie de Hodge III, Publications Math. IHES, 44 (1974), 5-77. Zbl0237.14003MR58 #16653b
  16. [DGMS] P. DELIGNE, P. GRIFFTTH, J. MORGAN, D. SULLIVAN, Real homotopy theory of Kähler manifolds, Inventiones Math., 29 (1975), 245-274. Zbl0312.55011
  17. [DG] M. DEMAZURE, P. GABRIEL, Groupes algébriques: Vol. I. Géométrie algébrique, généralités, groupes commutatifs, Paris, Masson, 1970. Zbl0203.23401
  18. [Di] A. DIMCA, Topics on Real and Complex Singularities, Advanced Lectures in Mathematics, Vieweg, 1987. Zbl0628.14001MR92d:32048
  19. [EH] D. EISENBUD, J. HARRIS, Schemes: the language of the modern algebraic geometry, Wadsworth & Brooks/Cole Math. Series, 1992. Zbl0745.14002
  20. [EN] D. EISENBUD, W. NEUMANN, Three-dimensional link theory and invariants of plane curve singularities, Ann. of Math. Stud., Princeton Univ. Press, 110 (1985). Zbl0628.57002MR87g:57007
  21. [GM] W. GOLDMAN, J. J. MILLSON, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Publications Math. IHES, 67 (1988), 43-96. Zbl0678.53059MR90b:32041
  22. [GrM] P. GRIFFITHS, J. MORGAN, Rational homotopy theory and differential forms, Progress in Mathematics, Birkhäuser, 1981. Zbl0474.55001MR82m:55014
  23. [Hai] R. HAIN, in preparation. 
  24. [H] R. HARTSHORNE, Foundations of Projective Geometry, Benjamin Inc., NY, 1967. Zbl0152.38702MR36 #5801
  25. [JM] D. JONHSON, J. J. MILLSON, Deformation spaces associated to compact hyperbolic manifolds, In: Discrete Groups in Geometry and Analysis, Papers in honor of G. D. Mostow on his 60-th birthday, R. Howe (ed.), Progress in Mathematics, 67 (1987), Birkhäuser, 48-106. Zbl0664.53023MR88j:22010
  26. [KM1] M. KAPOVICH, J. J. MILLSON, The relative deformation theory of representations and flat connections and deformations of linkages in constant curvature spaces, Compositio Math., 103 (1996), 287-317. Zbl0872.53035MR97i:58184
  27. [KM2] M. KAPOVICH, J. J. MILLSON, On the deformation theory of representations of fundamental groups of closed hyperbolic 3-manifolds, Topology, 35 (1996), 1085-1106. Zbl0855.32013MR97h:57029
  28. [KM3] M. KAPOVICH, J. J. MILLSON, Hodge theory and the art of paper folding, Publications of RIMS, Kyoto, 33 (1997), 1-33. Zbl0961.32026MR98a:58028
  29. [KM4] M. KAPOVICH, J. J. MILLSON, Moduli Spaces of Linkages and Arrangements, In: Advances in Geometry, J.-L. Brylinski (ed.), Progress in Mathematics, 172 (1999), Birkhäuser, 237-270. Zbl0936.14010MR2000g:14019
  30. [KM5] M. KAPOVICH, J. J. MILLSON, Universality theorems for configuration spaces of planar linkages, Preprint, 1998. Zbl1056.14077
  31. [Ke] A. B. KEMPE, On a general method of describing plane curves of the n-th degree by linkwork, Proc. London Math. Soc., 7 (1875), 213-216. Zbl08.0544.04JFM08.0544.04
  32. [Le] H. van der LEK, Extended Artin groups, Proc. of Symp. in Pure Math., 40 (1983), Part 2, p. 117-121. Zbl0523.14005MR85b:14005
  33. [Lo] E. LOOIJENGA, Invariant theory for generalized root systems, Inventiones Math., 61 (1980), 1-32. Zbl0436.17005MR82f:17011
  34. [LM] A. LUBOTZKY, A. MAGID, Varieties of representations for finitely generated groups, Memoirs of AMS, 336 (1985), N 5. Zbl0598.14042MR87c:20021
  35. [Mi] J. J. MILLSON, Rational homotopy theory and deformation problems from algebraic geometry, Proc. of ICM 1990, I, p. 549-558. Zbl0761.32011MR93b:14008a
  36. [Mn] N. MNËV, The universality theorems on the classification problem of configuration varieties and convex polytopes varieties, Lecture Notes in Math., 1346 (1988), 527-543. Zbl0667.52006MR90a:52013
  37. [Mo1] J. MORGAN, Hodge theory for the algebraic topology of smooth algebraic varieties, Proc. Symp. in Pure Math., 32 (1978), 119-127. Zbl0417.14005MR80g:32013
  38. [Mo2] J. MORGAN, The algebraic topology of smooth algebraic varieties, Publications Math. IHES, 48 (1978), 137-204. Zbl0401.14003MR80e:55020
  39. [N] P. E. NEWSTEAD, Introduction to Moduli Problems and Orbit Spaces, Tata Institute Lecture Notes, 1978. Zbl0411.14003MR81k:14002
  40. [Sh] G. SHEPHARD, Regular complex polytopes, Proc. London Math. Soc., 2 (1952), 82-97. Zbl0047.14106MR13,968k
  41. [Si] C. SIMPSON, Higgs bundles and local systems, Publications Math. IHES, 75 (1992), 5-95. Zbl0814.32003MR94d:32027
  42. [St] K. G. C. von STAUDT, Beiträge zur Geometre der Lage, Heft 2, 1857. 
  43. [Su1] D. SULLIVAN, Infinitesimal computations in topology, Publications Math. IHES, 47 (1977), 269-331. Zbl0374.57002MR58 #31119
  44. [Sum] H. SUMIHIRO, Equivariant completion, J. Math. Kyoto Univ., 14 (1974), 1-28; 15 (1975), 573-605. Zbl0277.14008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.