The algebraic topology of smooth algebraic varieties

John W. Morgan

Publications Mathématiques de l'IHÉS (1978)

  • Volume: 48, page 137-204
  • ISSN: 0073-8301

How to cite


Morgan, John W.. "The algebraic topology of smooth algebraic varieties." Publications Mathématiques de l'IHÉS 48 (1978): 137-204. <>.

author = {Morgan, John W.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Rational Homotopy Invariants; Wedge Product; Mixed Hodge Structures; Minimal Model},
language = {eng},
pages = {137-204},
publisher = {Institut des Hautes Études Scientifiques},
title = {The algebraic topology of smooth algebraic varieties},
url = {},
volume = {48},
year = {1978},

AU - Morgan, John W.
TI - The algebraic topology of smooth algebraic varieties
JO - Publications Mathématiques de l'IHÉS
PY - 1978
PB - Institut des Hautes Études Scientifiques
VL - 48
SP - 137
EP - 204
LA - eng
KW - Rational Homotopy Invariants; Wedge Product; Mixed Hodge Structures; Minimal Model
UR -
ER -


  1. [1] A. BOUSFIELD and D. KAN, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, 304, Berlin-Heidelberg-New York, Springer, 1972. Zbl0259.55004MR51 #1825
  2. [2] A. BOREL, Linear algebraic groups, New York, Benjamin, 1969. Zbl0186.33201MR40 #4273
  3. [3] P. DELIGNE, Théorie de Hodge, I, Actes du Congrès international des Mathématiciens, I, Nice, 1970, 425-430. Zbl0219.14006MR56 #356
  4. [4] P. DELIGNE, Théorie de Hodge, II, Publ. math. I.H.E.S., 40 (1971), 5-58. Zbl0219.14007MR58 #16653a
  5. [5] P. DELIGNE, P. GRIFFITHS, J. MORGAN and D. SULLIVAN, Real Homotopy theory of Kähler manifolds, Invent. math., 29 (1975), 245-274. Zbl0312.55011MR52 #3584
  6. [6] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic o, Ann. of Math., 79 (1964), 109-326. Zbl0122.38603MR33 #7333
  7. [7] A. MALCEV, Nilpotent groups without torsion, Izv. Akad. Nauk. SSSR, Math., 13 (1949), 201-212. MR10,507e
  8. [8] J. MILNOR, Morse Theory, Ann. of Math. Studies, 51, Princeton, New Jersey, Princeton University Press, 1963. Zbl0108.10401MR29 #634
  9. [9] M. NAGATA, Imbedding of an abstract variety in a complete variety, J. Math. Kyoto, 2 (1962), 1-10. Zbl0109.39503MR26 #118
  10. [10] J.-P. SERRE, Sur la topologie des variétés algébriques en caractéristique p, Symposium internacional de topologiá algebrica, pp. 24-53, Mexico City, 1958. Zbl0098.13103MR20 #4559
  11. [11] D. SULLIVAN, Infinitesimal Calculations in Topology, Publ. math. I.H.E.S., 47 (1977), 269-331. Zbl0374.57002MR58 #31119
  12. [12] A. WEIL, Introduction à l'étude des variétés kählériennes, Paris, Hermann, 1958. Zbl0137.41103
  13. [13] H. WHITNEY, Geometric Integration Theory, Princeton, Princeton University Press, 1957. Zbl0083.28204MR19,309c
  14. [14] P. DELIGNE, Théorie de Hodge, III, Publ. I.H.E.S., 44 (1974), 5-77. Zbl0237.14003MR58 #16653b

Citations in EuDML Documents

  1. John W. Morgan, Corrections to: “The algebraic topology of smooth algebraic varieties”
  2. Maurizio Letizia, 1-motivi di varietà proiettive semplicemente connesse e scoppiamenti
  3. J. Carlson, H. Clemens, J. Morgan, On the mixed Hodge structure associated to π 3 of a simply connected complex projective manifold
  4. Richard M. Hain, On a generalization of Hilbert's 21st problem
  5. Maurizio Letizia, Motivi associati a successioni di coomologia relativa
  6. Richard M. Hain, The Hodge de Rham theory of relative Malcev completion
  7. Clément Dupont, [unknown]
  8. Richard M. Hain, Nil-manifolds as links of isolated singularities
  9. Toshitake Kohno, Monodromy representations of braid groups and Yang-Baxter equations
  10. James A. Carlson, Domingo Toledo, Harmonic mappings of Kähler manifolds to locally symmetric spaces

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.