Noise sensitivity of boolean functions and applications to percolation

Itai Benjamini; Gil Kalai; Oded Schramm

Publications Mathématiques de l'IHÉS (1999)

  • Volume: 90, page 5-43
  • ISSN: 0073-8301

How to cite

top

Benjamini, Itai, Kalai, Gil, and Schramm, Oded. "Noise sensitivity of boolean functions and applications to percolation." Publications Mathématiques de l'IHÉS 90 (1999): 5-43. <http://eudml.org/doc/104164>.

@article{Benjamini1999,
author = {Benjamini, Itai, Kalai, Gil, Schramm, Oded},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {noise sensitivity; percolation},
language = {eng},
pages = {5-43},
publisher = {Institut des Hautes Études Scientifiques},
title = {Noise sensitivity of boolean functions and applications to percolation},
url = {http://eudml.org/doc/104164},
volume = {90},
year = {1999},
}

TY - JOUR
AU - Benjamini, Itai
AU - Kalai, Gil
AU - Schramm, Oded
TI - Noise sensitivity of boolean functions and applications to percolation
JO - Publications Mathématiques de l'IHÉS
PY - 1999
PB - Institut des Hautes Études Scientifiques
VL - 90
SP - 5
EP - 43
LA - eng
KW - noise sensitivity; percolation
UR - http://eudml.org/doc/104164
ER -

References

top
  1. [1] J. AMBJORN, B. DURHUUS and T. JONSSON, Quantum Geometry, Cambridge University Press, Cambridge, 1997. Zbl0993.82500MR98i:82001
  2. [2] N. ALON and J. SPENCER, The Probabilistic Method, Wiley, New York (1992). Zbl0767.05001MR93h:60002
  3. [3] W. BECKNER, Inequalities in Fourier analysis, Annals of Math. 102 (1975), 159-182. Zbl0338.42017MR52 #6317
  4. [4] M. BEN-OR and N. LINIAL, Collective coin flipping, in Randomness and Computation (S. Micali, ed.), Academic Press, New York (1990), pp. 91-115. Earlier version : Collective coin flipping, robust voting games, and minima of Banzhaf value, Proc. 26th IEEE Symp. on the Foundation of Computer Science (1985), 408-416. 
  5. [5] I. BENJAMINI and O. SCHRAMM, Conformal invariance of Voronoi percolation, Commun. Math. Phys., 197 (1998), 75-107. Zbl0921.60081MR99i:60172
  6. [6] I. BENJAMINI, G. KALAI and O. SCHRAMM, Noise sensitivity, concentration of measure and first passage percolation, in preparation. Zbl0986.60002
  7. [7] A. BONAMI, Etude des coefficients Fourier des fonctions de Lp(G), Ann. Inst. Fourier, 20 (1970), 335-402. Zbl0195.42501MR44 #727
  8. [8] R. BOPPANA, Threshold functions and bounded depth monotone circuits, Proceedings of 16th Annual ACM Symposium on Theory of Computing (1984), 475-479. 
  9. [9] R. BOPPANA, The average sensitivity of bounded depth circuits, Inform. Process. Lett. 63 (1997) 257-261. Zbl06588311MR98f:68093
  10. [10] J. BOURGAIN, J. KAHN, G. KALAI, Y. KATZNELSON and N. LINIAL, The influence of variables in product spaces, Isr. J. Math. 77 (1992), 55-64. Zbl0771.60002MR94g:05091
  11. [11] J. BOURGAIN and G. KALAI, Influences of variables and threshold intervals under group symmetries, Geom. Funct. Anal., 7 (1997), 438-461. Zbl0982.20004MR98j:20005
  12. [12] J. BRUCK, Harmonic analysis of polynomial threshold functions. SIAM J. Discrete Math. 3 (1990), 168-177. Zbl0695.94022MR91e:94040
  13. [13] J. BRUCK and R. SMOLENSKY, Polynomial threshold functions, AC0 functions, and spectral norms. SIAM J. Comput. 21 (1992), 33-42. Zbl0743.68063MR93a:68053
  14. [14] A. BUNDE and S. HAVLIN (ed.s'), Fractals and Disordered Systems, Springer 1991. Zbl0746.58009MR92m:82002
  15. [15] J. T. CHAYES, L. CHAYES, D. S. FISHER and T. SPENCER, Finite-size scaling and correlation length for disordered systems, Phys. Rev. Lett. 57 (1986), 2999-3002. MR89a:82026
  16. [16] E. FRIEDGUT, Boolean functions with low average sensitivity, Combinatorica 18 (1998), 27-36. Zbl0909.06008MR99g:28021
  17. [17] E. FRIEDGUT, Necessary and sufficient conditions for sharp thresholds of graphs properties and the k-sat problem, Jour. Amer. Math. Soc. 12 (1999), 1017-1054. Zbl0932.05084MR2000a:05183
  18. [18] E. FRIEDGUT and G. KALAI, Every monotone graph property has a sharp threshold, Proc. Amer. Math. Soc. 124 (1996), 2993-3002. Zbl0864.05078MR97e:05172
  19. [19] G. GRIMMETT, Percolation, Springer-Verlag, Berlin (1989). Zbl0691.60089MR90j:60109
  20. [20] O. HÄGGSTRÖM, Y. PERES and J. E. STEIF, Dynamical percolation, Ann. IHP 33 (1997), 497-528. Zbl0894.60098MR98m:60153
  21. [21] J. HÅSTAD, Almost optimal lower bounds for small depth circuits, in Randomness and Computation, 5, ed. S. Micali, (1989), 143-170. 
  22. [22] J. HÅSTAD and M. GOLDMANN, On the power of small-depth threshold circuits, Computational Complexity, 1 (1991), 113-129. Zbl0774.68060MR93e:68025
  23. [23] J. KAHN, G. KALAI and N. LINIAL, The influence of variables on boolean functions, Proc. 29-th Ann. Symp. on Foundations of Comp. Sci., (1988), 68-80. 
  24. [24] H. KESTEN, Scaling relations for 2D-percolation, Comm. Math. Phys. 109 (1987), 109-156. Zbl0616.60099MR88k:60174
  25. [25] H. KESTEN and Y. ZHANG, Strict inequalites for some critical exponents in 2D-percolation. J. Statist. Phys. 46 (1987), 1031-1055. Zbl0683.60081MR89g:60305
  26. [26] R. P. LANGLANDS, P. POULIOT and Y. SAINT-AUBIN, Conformal invariance in two-dimensional percolation, Bull. Amer. Math. Soc. (N.S.) 30 (1994), 1-61. Zbl0794.60109MR94e:82056
  27. [27] N. LINIAL, Y. MANSOUR and N. NISAN, Constant depth circuits, Fourier transform, and learnability, J. Assoc. Comput. Mach. 40 (1993), 607-620. Zbl0781.94006MR96h:68074
  28. [28] V. V. PETROV, Limit theorems of probability theory, Oxford University Press, (1995). Zbl0826.60001MR96h:60048
  29. [29] L. RUSSO, A note on percolation, ZW. 43 (1978), 39-48. Zbl0363.60120MR58 #7931
  30. [30] P. SEYMOUR and D. WELSH, Percolation probabilities on the square lattice. Advances in Graph Theory. Ann. Discrete Math. 3 (1978), 227-245. Zbl0405.60015MR58 #13410
  31. [31] M. TALAGRAND, On Russo's approximate zero-one law, Ann. of Prob. 22 (1994), 1576-1587. Zbl0819.28002MR96g:28009
  32. [32] M. TALAGRAND, Concentration of measure and isoperimetric inequalities in product spaces, Publ. I.H.E.S., 81 (1995), 73-205. Zbl0864.60013MR97h:60016
  33. [33] M. TALAGRAND, How much are increasing sets positively correlated? Combinatorica 16 (1996), 243-258. Zbl0861.05008MR97e:05031
  34. [34] B. TSIRELSON, Fourier-Walsh coefficients for a coalescing flow (discrete time), preprint, math.PR/9903068. 
  35. [35] B. TSIRELSON, The Five noises, preprint. Zbl1018.60040
  36. [36] A. YAO, Circuits and local computation, Proceedings of 21st Annual ACM Symposium on Theory of Computing, (1989), 186-196. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.