Dynamical Percolation

Olle Häggström; Yuval Peres; Jeffrey E. Steif

Annales de l'I.H.P. Probabilités et statistiques (1997)

  • Volume: 33, Issue: 4, page 497-528
  • ISSN: 0246-0203

How to cite

top

Häggström, Olle, Peres, Yuval, and Steif, Jeffrey E.. "Dynamical Percolation." Annales de l'I.H.P. Probabilités et statistiques 33.4 (1997): 497-528. <http://eudml.org/doc/77580>.

@article{Häggström1997,
author = {Häggström, Olle, Peres, Yuval, Steif, Jeffrey E.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {bond percolation; sub- and supercritical percolation; Hausdorff dimension; infinite open cluster},
language = {eng},
number = {4},
pages = {497-528},
publisher = {Gauthier-Villars},
title = {Dynamical Percolation},
url = {http://eudml.org/doc/77580},
volume = {33},
year = {1997},
}

TY - JOUR
AU - Häggström, Olle
AU - Peres, Yuval
AU - Steif, Jeffrey E.
TI - Dynamical Percolation
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1997
PB - Gauthier-Villars
VL - 33
IS - 4
SP - 497
EP - 528
LA - eng
KW - bond percolation; sub- and supercritical percolation; Hausdorff dimension; infinite open cluster
UR - http://eudml.org/doc/77580
ER -

References

top
  1. [1] K. Alexander, Simultaneous uniqueness of infinite clusters in stationary random labeled graphs, Commun. Math. Phys., Vol. 168, 1995, pp. 39-55. Zbl0827.60080MR1324390
  2. [2] K. Athreya and P. Ney, Branching Processes, Springer-Verlag, New York, 1972. Zbl0259.60002MR373040
  3. [3] R.E. Barlow and F. Proschan, Mathematical Theory of Reliability, Wiley, New York, 1965. Zbl0132.39302MR195566
  4. [4] I. Benjamini, R. Pemantle and Y. Peres, Martin capacity for Markov chains, Ann. Probab., Vol. 23, 1995, pp. 1332-1346. Zbl0840.60068MR1349175
  5. [5] P. Doyle and J.L. Snell, Random Walks and Electric Networks, Mathematical Assoc. of America, Washington, D. C., 1984. Zbl0583.60065MR920811
  6. [6] S.N. Ethier and T.G. Kurtz, Markov Processes-Characterization and Convergence, John Wiley & Sons, New York., 1986. Zbl0592.60049
  7. [7] W. Feller, An Introduction to Probability Theory and its Applications, Volume 2. John Wiley and Sons: New York, 1966. Zbl0138.10207MR210154
  8. [8] O. Frostman, Potential d'équilibre et capacité des ensembles, Thesis, Lund, 1935. 
  9. [9] M. Fukushima, Basic properties of Brownian motion and a capacity on the Wiener space, J. Math. Soc. Japan, Vol. 36, 1984, pp. 161-175. Zbl0522.60081MR723601
  10. [10] G. Grimmett, Percolation, Springer-Verlag, New York, 1989. Zbl0691.60089MR995460
  11. [11] T. Hara and G. Slade, Mean field behavior and the lace expansion, in Probability Theory and Phase Transitions, (ed. G. Grimmett), Proceedings of the NATO ASI meeting in Cambridge1993, Kluwer, 1994. Zbl0831.60107MR1283177
  12. [12] T.E. Harris, A correlation inequality for Markov processes in partially ordered spaces, Ann. Probab., Vol. 5, 1977, pp. 451-454. Zbl0381.60072MR433650
  13. [13] J.P. Kahane, Some random series of functions, Second edition, Cambridge University Press:Cambridge, 1985. Zbl0571.60002MR833073
  14. [14] H. Kesten, The critical probability of bond percolation on the square lattice equals 1/2, Commun. Math. Phys., Vol. 74, 1980, pp. 41-59. Zbl0441.60010MR575895
  15. [15] H. Kesten, Scaling relations for 2D-percolation, Commun. Math. Phys., Vol. 109, 1987, pp. 109-156. Zbl0616.60099MR879034
  16. [16] H. Kesten and Y. Zhang, Strict inequalites for some critical exponents in 2D-percolation, J. Statist. Phys., Vol. 46, 1987, pp. 1031-1055. Zbl0683.60081MR893131
  17. [17] J.-F. Le Gall, Some properties of planar Brownian motion, École d'été de probabilités de Saint-Flour XX, Lecture Notes in Math., Vol. 1527, 1992, pp. 111-235. Springer, New York. Zbl0779.60068MR1229519
  18. [18] T.M. Liggett, Interacting Particle Systems, Springer, New York, 1985. Zbl0559.60078MR776231
  19. [19] R. Lyons, Random walks and percolation on trees, Ann. Probab., Vol. 18, 1990, pp. 931-958. Zbl0714.60089MR1062053
  20. [20] R. Lyons, Random walks, capacity, and percolation on trees, Ann. Probab., Vol. 20, 1992, pp. 2043-2088. Zbl0766.60091MR1188053
  21. [21] R. Pemantle and Y. Peres, Critical random walk in random environment on trees, Ann. Probab., Vol. 23, 1995a, pp. 105-140. Zbl0837.60066MR1330763
  22. [22] R. Pemantle and Y. Peres, Galton-Watson trees with the same mean have the same polar sets, Ann. Probab., Vol. 23, 1995b, pp. 1102-1124. Zbl0833.60085MR1349163
  23. [23] M.D. Penrose, On the existence of self-intersections for quasi-every Brownian path in space, Ann. Probab., Vol. 17, 1989, pp. 482-502. Zbl0714.60067MR985374
  24. [24] Y. Peres, Intersection-equivalence of Brownian paths and certain branching processes, Commun. Math. Phys., Vol. 177, 1996, pp. 417-434. Zbl0851.60080MR1384142
  25. [25] M. Rosenblatt, Markov Processes. Structure and Asymptotic Behavior, Springer, New York, 1971. Zbl0236.60002MR329037
  26. [26] L.A. Shepp, Covering the circle with random arcs, Israel J. Math., Vol. 11, 1972, pp. 328-345. Zbl0241.60008MR295402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.