Formal loops II : a local Riemann–Roch theorem for determinantal gerbes

Mikhail Kapranov; Éric Vasserot

Annales scientifiques de l'École Normale Supérieure (2007)

  • Volume: 40, Issue: 1, page 113-133
  • ISSN: 0012-9593

How to cite


Kapranov, Mikhail, and Vasserot, Éric. "Formal loops II : a local Riemann–Roch theorem for determinantal gerbes." Annales scientifiques de l'École Normale Supérieure 40.1 (2007): 113-133. <>.

author = {Kapranov, Mikhail, Vasserot, Éric},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {gerbes; chiral differential operators; loop spaces; Riemann-Roch theorem},
language = {eng},
number = {1},
pages = {113-133},
publisher = {Elsevier},
title = {Formal loops II : a local Riemann–Roch theorem for determinantal gerbes},
url = {},
volume = {40},
year = {2007},

AU - Kapranov, Mikhail
AU - Vasserot, Éric
TI - Formal loops II : a local Riemann–Roch theorem for determinantal gerbes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 1
SP - 113
EP - 133
LA - eng
KW - gerbes; chiral differential operators; loop spaces; Riemann-Roch theorem
UR -
ER -


  1. [1] Arbarello E., De Concini C., Kac V., The infinite wedge representation and the reciprocity law for algebraic curves, Part 1, in: Proc. Sympos. Pure Math., vol. 49, Amer. Math. Soc., Providence, RI, 1989, pp. 171-190. Zbl0699.22028MR1013132
  2. [2] Anderson G., Pablos Romo F., Simple proofs of classical explicit reciprocity laws on curves using determinantal groupoids over an artinian local ring, Comm. Algebra32 (2004) 79-102. Zbl1077.14033MR2036223
  3. [3] Bloch S., K 2 and algebraic cycles, Ann. of Math.99 (1974) 349-379. Zbl0298.14005MR342514
  4. [4] Bressler P., Kapranov M., Tsygan B., Vasserot É., Riemann–Roch for real varieties, in preparation. Zbl1230.14010
  5. [5] Bosch S., Lütkebohmert W., Raynaud M., Néron Models, Springer-Verlag, Berlin/New York, 1990. Zbl0705.14001MR1045822
  6. [6] Breen L., On the classification of 2-gerbes and 2-stacks, Astérisque225 (1994). Zbl0818.18005MR1301844
  7. [7] Brylinski J.-L., Deligne P., Central extensions of reductive groups by K 2 , Publ. Math. IHÉS94 (2001) 5-85. Zbl1093.20027MR1896177
  8. [8] Contou-Carrère C., Jacobienne locale, groupe de bivecteurs de Witt universel et symbole modéré, C. R. Acad. Sci. Paris, Série I318 (1994) 743-746. Zbl0840.14031MR1272340
  9. [9] Deligne P., Le déterminant de la cohomologie, Contemp. Math.67 (1987) 93-177. Zbl0629.14008MR902592
  10. [10] Deligne P., Le symbole modéré, Publ. Math. IHÉS73 (1991) 147-181. Zbl0749.14011MR1114212
  11. [11] Drinfeld V., Infinite-dimensional vector bundles in algebraic geometry (an introduction), math.AG/0309155. Zbl1108.14012
  12. [12] Elbaz-Vincent Ph., Mueller-Stach S., Milnor K-theory of rings, higher Chow groups and applications, Invent. Math.148 (2002) 177-206. Zbl1027.19004MR1892848
  13. [13] Gillet H., Riemann–Roch theorems for higher algebraic K-theory, Adv. Math.40 (1981) 203-289. Zbl0478.14010
  14. [14] Goncharov A.B., Explicit construction of characteristic classes, in: Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 169-210. Zbl0809.57016MR1237830
  15. [15] Denef J., Loeser F., Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math.135 (1999) 201-232. Zbl0928.14004MR1664700
  16. [16] Gorbounov V., Malikov F., Schechtman V., Gerbes of chiral differential operators, Math. Res. Lett.7 (2000) 55-66. Zbl0982.17013MR1748287
  17. [17] Gorbounov V., Malikov F., Schechtman V., Gerbes of chiral differential operators. II. Vertex algebroids, Invent. Math.155 (2004) 605-680. Zbl1056.17022MR2038198
  18. [18] Haboush W., Infinite-dimensional algebraic geometry: algebraic structures on p-adic groups and their homogeneous spaces, Tohoku Math. J.57 (2005) 65-117. Zbl1119.14004MR2113991
  19. [19] Kac V., Vertex Algebras for Beginners, University Lecture Series, vol. 10, Amer. Math. Soc., Providence, RI, 1996. Zbl0861.17017MR1417941
  20. [20] Kapranov M., Vasserot É., Vertex algebras and the formal loop space, Publ. Math. IHÉS100 (2004) 209-269. Zbl1106.17038MR2102701
  21. [21] Kapranov M., Vasserot É., Formal loops III: Chiral differential operators, in preparation. Zbl1154.14007
  22. [22] Kumar S., Kac–Moody Groups, Their Flag Varieties and Representation Theory, Progress in Math., vol. 204, Birkhäuser, Basel, 2002. Zbl1026.17030
  23. [23] Laumon G., Moret-Bailly L., Champs algébriques, A Series of Modern Surveys in Mathematics, vol. 39, Springer-Verlag, Berlin/New York, 2000. MR1771927
  24. [24] Matsumoto H., Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup.2 (1969) 1-62. Zbl0261.20025MR240214
  25. [25] Moore C.C., Group extensions of p-adic and adelic linear groups, Publ. Math. IHÉS35 (1968) 157-222. Zbl0159.03203MR244258
  26. [26] Malikov F., Schechtman V., Vaintrob A., Chiral de Rham complex, Comm. Math. Phys.204 (1999) 439-473. Zbl0952.14013MR1704283
  27. [27] Pressley A., Segal G., Loop Groups, Oxford Univ. Press, London, 1986. Zbl0618.22011MR900587
  28. [28] Srinivas V., Algebraic K-theory, Birkhäuser, Basel, 1996. Zbl0860.19001MR1382659
  29. [29] van der Kallen W., The K 2 of rings with many units, Ann. Sci. École Norm. Sup.10 (1977) 473-515. Zbl0393.18012MR506170

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.