Invariants l2 de relations d’équivalence et de groupes

Damien Gaboriau

Publications Mathématiques de l'IHÉS (2002)

  • Volume: 95, page 93-150
  • ISSN: 0073-8301

How to cite

top

Gaboriau, Damien. "Invariants l2 de relations d’équivalence et de groupes." Publications Mathématiques de l'IHÉS 95 (2002): 93-150. <http://eudml.org/doc/104184>.

@article{Gaboriau2002,
author = {Gaboriau, Damien},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {measure preserving action; equivalence relation; -Betti numbers; classification},
language = {fre},
pages = {93-150},
publisher = {Institut des Hautes Etudes Scientifiques},
title = {Invariants l2 de relations d’équivalence et de groupes},
url = {http://eudml.org/doc/104184},
volume = {95},
year = {2002},
}

TY - JOUR
AU - Gaboriau, Damien
TI - Invariants l2 de relations d’équivalence et de groupes
JO - Publications Mathématiques de l'IHÉS
PY - 2002
PB - Institut des Hautes Etudes Scientifiques
VL - 95
SP - 93
EP - 150
LA - fre
KW - measure preserving action; equivalence relation; -Betti numbers; classification
UR - http://eudml.org/doc/104184
ER -

References

top
  1. [Ada90] S. ADAMS, Trees and amenable equivalence relations, Ergodic Theory Dynamical Systems, 10(1) (1990), 1-14. Zbl0667.28003MR1053796
  2. [AS90] S. ADAMS and R. SPATZIER, Kazhdan groups, cocycles and trees, Amer. J. Math., 112(2) (1990), 271-287. Zbl0712.22007MR1047300
  3. [Ati76] M. ATIYAH, Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974), pp. 43-72. Astérisque, No. 32-33. Paris: Soc. Math. France, 1976. Zbl0323.58015
  4. [BCH94] P. BAUM, A. CONNES and N. HIGSON, Classifying space for proper actions and K-theory of group C-algebras, In C-algebras: 1943-1993 (San Antonio, TX, 1993), pp. 240-291. Providence, RI: Amer. Math. Soc., 1994. Zbl0830.46061MR1292018
  5. [BV97] M. BEKKA and A. VALETTE, Group cohomology, harmonic functions and the first L 2 -Betti number, Potential Anal., 6(4) (1997), 313-326. Zbl0882.22013MR1452785
  6. [Bor85] A. BOREL, The L 2 -cohomology of negatively curved Riemannian symmetric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math., 10 (1985), 95-105. Zbl0586.57022MR802471
  7. [Bro82] K. BROWN, Cohomology of groups, New York: Springer, 1982. Zbl0584.20036MR672956
  8. [CFW81] A. CONNES, J. FELDMAN and B. WEISS, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynamical Systems, 1(4), 431-450 (1982), 1981. Zbl0491.28018MR662736
  9. [CG86] J. CHEEGER and M. GROMOV, L 2 -cohomology and group cohomology, Topology, 25(2) (1986), 189-215. Zbl0597.57020MR837621
  10. [Co79] A. CONNES, Sur la théorie non commutative de l’intégration, In Algèbres d’opérateurs (Sém., Les Plans-sur-Bex, 1978), pp. 19-143. Lect. Notes 725. Berlin: Springer, 1979. Zbl0412.46053
  11. [Co82] A. CONNES, A survey of foliations and operator algebras, In Operator algebras and applications, Part I (Kingston, Ont., 1980), pp. 521-628. Providence, RI: Amer. Math. Soc., 1982. Zbl0531.57023MR679730
  12. [CZ89] M. COWLING and R. ZIMMER, Actions of lattices in sp(1,n), Ergodic Theory Dynamical Systems, 9(2) (1989), 221-237. Zbl0681.57026MR1007408
  13. [Dix69] J. DIXMIER, Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann), Gauthier-Villars Editeur, Paris, 1969. Deuxième édition, revue et augmentée, Cahiers Scientifiques, Fasc. XXV. Zbl0088.32304
  14. [Dye59] H. DYE, On groups of measure preserving transformations, I, Amer. J. Math., 81 (1959), 119-159. Zbl0087.11501MR131516
  15. [Dye63] H. DYE, On groups of measure preserving transformations, II, Amer. J. Math., 85 (1963), 551-576. Zbl0191.42803MR158048
  16. [Eck00] B. ECKMANN, Introduction to l2-methods in topology: reduced l2-homology, harmonic chains, l2-Betti numbers, Israel J. Math., 117 (2000), 183-219. Notes prepared by Guido Mislin. Zbl0948.55006MR1760592
  17. [Ele97] G. ELEK, Betti numbers and Euler’s formula for combinatorial foliations, Manuscripta Math., 92(2) (1997), 239-247. Zbl0876.57042
  18. [FM77a] J. FELDMAN and C. MOORE, Ergodic equivalence relations, cohomology, and von Neumann algebras, I, Trans. Amer. Math. Soc., 234(2) (1977), 289-324. Zbl0369.22009MR578656
  19. [FM77b] J. FELDMAN and C. MOORE, Ergodic equivalence relations, cohomology, and von Neumann algebras, II, Trans. Amer. Math. Soc., 234(2) (1977), 325-359. Zbl0369.22010MR578730
  20. [FSZ89] J. FELDMAN, C. SUTHERLAND and R. ZIMMER, Subrelations of ergodic equivalence relations, Ergodic Theory Dynamical Systems, 9(2) (1989), 239-269. Zbl0654.22003MR1007409
  21. [Fur99a] A. FURMAN, Gromov’s measure equivalence and rigidity of higher rank lattices, Ann. of Math. (2), 150(3) (1999), 1059-1081. Zbl0943.22013
  22. [Fur99b] A. FURMAN, Orbit equivalence rigidity, Ann. of Math. (2), 150(3) (1999), 1083-1108. Zbl0943.22012MR1740985
  23. [Gab00a] D. GABORIAU, Coût des relations d’équivalence et des groupes, Invent. Math., 139(1) (2000), 41-98. Zbl0939.28012
  24. [Gab00b] D. GABORIAU, Sur la (co-)homologie L 2 des actions préservant une mesure. C. R. Acad. Sci. Paris Sér. I Math., 330(5) (2000), 365-370. Zbl0988.37003MR1751672
  25. [Gro93] M. GROMOV, Asymptotic invariants of infinite groups. In Geometric group theory, Vol. 2 (Sussex, 1991), pp. 1-295. Cambridge: Cambridge Univ. Press, 1993. Zbl0841.20039MR1253544
  26. [Har00] P. DE LA HARPE, Topics in geometric group theory, Chicago, IL: University of Chicago Press, 2000. Zbl0965.20025MR1786869
  27. [Hae71] A. HAEFLIGER, Homotopy and integrability, In Manifolds-Amsterdam 1970 (Proc. Nuffic Summer School), pp. 133-163. Berlin: Springer, 1971. Zbl0215.52403MR285027
  28. [Hjo02] G. HJORTH, A lemma for cost attained, Manuscrit, 2002. Zbl1101.37004
  29. [HL91] J. HEITSCH and C. LAZAROV, Homotopy invariance of foliation Betti numbers, Invent. Math., 104(2) (1991), 321-347. Zbl0756.46040MR1098613
  30. [ Jol01] P. JOLISSAINT, Approximation properties for measure equivalent groups, Manuscrit, 2001. 
  31. [Kec01] A. KECHRIS, Lectures on costs of equivalence relations and groups, Prépublication Caltech, 2001. 
  32. [Kri70] W. KRIEGER, On constructing non-isomorphic hyperfinite factors of type III, J. Functional Analysis, 6 (1970), 97-109. Zbl0209.44601MR259624
  33. [Lev95] G. LEVITT, On the cost of generating an equivalence relation, Ergodic Theory Dynam. Systems, 15(6) (1995), 1173-1181. Zbl0843.28010MR1366313
  34. [Luc94] W. LÜCK, L 2 -torsion and 3-manifolds, In Low-dimensional topology (Knoxville, TN, 1992), pp. 75-107. Cambridge, MA: Internat. Press, 1994. Zbl0870.57029MR1316175
  35. [Luc98] W. LÜCK, L 2 -invariants of regular coverings of compact manifolds and CW-complexes, à paraître in “Handbook of Geometry”, Elsevier, 1998. Zbl1069.57017
  36. [Luc98a] W. LÜCK, Dimension theory of arbitrary modules over finite von Neumann algebras and L 2 -Betti numbers, I, Foundations, J. Reine Angew. Math., 495 (1998), 135-162. Zbl0921.55016MR1603853
  37. [Luc98b] W. LÜCK, Dimension theory of arbitrary modules over finite von Neumann algebras and L 2 -Betti numbers, II, Applications to Grothendieck groups, L 2 -Euler characteristics and Burnside groups, J. Reine Angew. Math., 496 (1998), 213-236. Zbl1001.55019MR1605818
  38. [Moo82] C. MOORE, Ergodic theory and von Neumann algebras, In Operator algebras and applications, Part 2 (Kingston, Ont., 1980), pp. 179-226. Providence, RI: Amer. Math. Soc., 1982. Zbl0524.46045MR679505
  39. [MS02] N. MONOD and Y. SHALOM, en préparation. Communication personnelle. 
  40. [MvN36] F. MURRAY and J. VON NEUMANN, On rings of operators, Ann. of Math. (2), 37 (1936), 116-229. Zbl0014.16101MR1503275
  41. [MvN43] F. MURRAY and J. VON NEUMANN, On rings of operators, IV, Ann. of Math. (2), 44 (1943), 716-808. Zbl0060.26903MR9096
  42. [OW80] D. ORNSTEIN and B. WEISS, Ergodic theory of amenable group actions, I, The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.), 2(1) (1980), 161-164. Zbl0427.28018MR551753
  43. [Pau99] F. PAULIN, Propriétés asymptotiques des relations d’équivalences mesurées discrètes, Markov Process. Related Fields, 5(2) (1999), 163-200. Zbl0937.28015
  44. [Sch87] K. SCHMIDT, Some solved and unsolved problems concerning orbit equivalence of countable group actions, Proceedings of the conference on ergodic theory and related topics, II (Georgenthal, 1986), pp. 171-184, Leipzig: Teubner, 1987. Zbl0646.28009MR931144
  45. [Shl99a] D. SHLYAKHTENKO, Free Fisher information with respect to a completely positive map and cost of equivalence relations, MSRI preprint 1999-030, 1999. Zbl0982.46049MR1824202
  46. [Shl99b] D. SHLYAKHTENKO, Microstates free entropy and cost of equivalence relations, preprint, http://xxx.lanl.gov/abs/math.OA/9912224. MR1983036
  47. [Sun87] V. SUNDER, An invitation to von Neumann algebras, New York: Springer, 1987. Zbl0616.46052MR866671
  48. [Zim78] R. ZIMMER, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Functional Analysis, 27(3) (1978), 350-372. Zbl0391.28011MR473096
  49. [Zim84] R. ZIMMER, Ergodic theory and semisimple groups, Basel: Birkhäuser Verlag, 1984. Zbl0571.58015MR776417

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.