An obstruction to -dimension
Nicolas Monod[1]; Henrik Densing Petersen[2]
- [1] École Polytechnique Fédérale de Lausanne Station 8, CH-1015 Lausanne (Switzerland)
- [2] University of Copenhagen Department of Mathematical Sciences Universitetsparken 5 2100 København Ø(Denmark)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 4, page 1363-1371
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMonod, Nicolas, and Petersen, Henrik Densing. "An obstruction to $\ell ^{p}$-dimension." Annales de l’institut Fourier 64.4 (2014): 1363-1371. <http://eudml.org/doc/275442>.
@article{Monod2014,
abstract = {Let $G$ be any group containing an infinite elementary amenable subgroup and let $2<p<\infty $. We construct an exhaustion of $\ell ^pG$ by closed invariant subspaces which all intersect trivially a fixed non-trivial closed invariant subspace. This is an obstacle to $\ell ^p$-dimension and gives an answer to a question of Gaboriau.},
affiliation = {École Polytechnique Fédérale de Lausanne Station 8, CH-1015 Lausanne (Switzerland); University of Copenhagen Department of Mathematical Sciences Universitetsparken 5 2100 København Ø(Denmark)},
author = {Monod, Nicolas, Petersen, Henrik Densing},
journal = {Annales de l’institut Fourier},
keywords = {$\ell ^p$-dimension; abstract harmonic analysis; -dimension},
language = {eng},
number = {4},
pages = {1363-1371},
publisher = {Association des Annales de l’institut Fourier},
title = {An obstruction to $\ell ^\{p\}$-dimension},
url = {http://eudml.org/doc/275442},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Monod, Nicolas
AU - Petersen, Henrik Densing
TI - An obstruction to $\ell ^{p}$-dimension
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 4
SP - 1363
EP - 1371
AB - Let $G$ be any group containing an infinite elementary amenable subgroup and let $2<p<\infty $. We construct an exhaustion of $\ell ^pG$ by closed invariant subspaces which all intersect trivially a fixed non-trivial closed invariant subspace. This is an obstacle to $\ell ^p$-dimension and gives an answer to a question of Gaboriau.
LA - eng
KW - $\ell ^p$-dimension; abstract harmonic analysis; -dimension
UR - http://eudml.org/doc/275442
ER -
References
top- Jeff Cheeger, Mikhael Gromov, -cohomology and group cohomology, Topology 25 (1986), 189-215 Zbl0597.57020MR837621
- Ching Chou, Elementary amenable groups, Illinois J. Math. 24 (1980), 396-407 Zbl0439.20017MR573475
- Walter Feit, John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029 Zbl0124.26402MR166261
- Damien Gaboriau, Invariants de relations d’équivalence et de groupes, Publ. Math. Inst. Hautes Études Sci. (2002), 93-150 Zbl1022.37002MR1953191
- Antoine Gournay, A dynamical approach to von Neumann dimension, Discrete Contin. Dyn. Syst. 26 (2010), 967-987 Zbl1183.37012MR2600725
- Antoine Gournay, Further properties of dimension, J. Funct. Anal. 266 (2014), 487-513 Zbl1298.43002MR3132720
- P. Hall, C. R. Kulatilaka, A property of locally finite groups, J. London Math. Soc. 39 (1964), 235-239 Zbl0136.27903MR161907
- Ben Hayes, An -version of von Neumann dimension for Banach space representations of sofic groups II Zbl06476734
- Ben Hayes, An -version of von Neumann dimension for Banach space representations of sofic groups, J. Funct. Anal. 266 (2014), 989-1040 Zbl1300.43002MR3132735
- Edwin Hewitt, Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, (1963), Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg Zbl0115.10603MR156915
- F. J. Murray, J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), 116-229 Zbl0014.16101MR1503275
- Pierre Pansu, -cohomology of symmetric spaces, Geometry, analysis and topology of discrete groups 6 (2008), 305-326, Int. Press, Somerville, MA Zbl1159.43003MR2464400
- Michael J. Puls, Zero divisors and , Proc. Amer. Math. Soc. 126 (1998), 721-728 Zbl0886.43003MR1415362
- Sadahiro Saeki, On convolution squares of singular measures, Illinois J. Math. 24 (1980), 225-232 Zbl0496.42006MR575063
- Roman Sauer, -Betti numbers of discrete measured groupoids, Internat. J. Algebra Comput. 15 (2005), 1169-1188 Zbl1099.46045MR2197826
- J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250-270 Zbl0236.20032MR286898
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.