An obstruction to p -dimension

Nicolas Monod[1]; Henrik Densing Petersen[2]

  • [1] École Polytechnique Fédérale de Lausanne Station 8, CH-1015 Lausanne (Switzerland)
  • [2] University of Copenhagen Department of Mathematical Sciences Universitetsparken 5 2100 København Ø(Denmark)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 4, page 1363-1371
  • ISSN: 0373-0956

Abstract

top
Let G be any group containing an infinite elementary amenable subgroup and let 2 < p < . We construct an exhaustion of p G by closed invariant subspaces which all intersect trivially a fixed non-trivial closed invariant subspace. This is an obstacle to p -dimension and gives an answer to a question of Gaboriau.

How to cite

top

Monod, Nicolas, and Petersen, Henrik Densing. "An obstruction to $\ell ^{p}$-dimension." Annales de l’institut Fourier 64.4 (2014): 1363-1371. <http://eudml.org/doc/275442>.

@article{Monod2014,
abstract = {Let $G$ be any group containing an infinite elementary amenable subgroup and let $2&lt;p&lt;\infty $. We construct an exhaustion of $\ell ^pG$ by closed invariant subspaces which all intersect trivially a fixed non-trivial closed invariant subspace. This is an obstacle to $\ell ^p$-dimension and gives an answer to a question of Gaboriau.},
affiliation = {École Polytechnique Fédérale de Lausanne Station 8, CH-1015 Lausanne (Switzerland); University of Copenhagen Department of Mathematical Sciences Universitetsparken 5 2100 København Ø(Denmark)},
author = {Monod, Nicolas, Petersen, Henrik Densing},
journal = {Annales de l’institut Fourier},
keywords = {$\ell ^p$-dimension; abstract harmonic analysis; -dimension},
language = {eng},
number = {4},
pages = {1363-1371},
publisher = {Association des Annales de l’institut Fourier},
title = {An obstruction to $\ell ^\{p\}$-dimension},
url = {http://eudml.org/doc/275442},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Monod, Nicolas
AU - Petersen, Henrik Densing
TI - An obstruction to $\ell ^{p}$-dimension
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 4
SP - 1363
EP - 1371
AB - Let $G$ be any group containing an infinite elementary amenable subgroup and let $2&lt;p&lt;\infty $. We construct an exhaustion of $\ell ^pG$ by closed invariant subspaces which all intersect trivially a fixed non-trivial closed invariant subspace. This is an obstacle to $\ell ^p$-dimension and gives an answer to a question of Gaboriau.
LA - eng
KW - $\ell ^p$-dimension; abstract harmonic analysis; -dimension
UR - http://eudml.org/doc/275442
ER -

References

top
  1. Jeff Cheeger, Mikhael Gromov, L 2 -cohomology and group cohomology, Topology 25 (1986), 189-215 Zbl0597.57020MR837621
  2. Ching Chou, Elementary amenable groups, Illinois J. Math. 24 (1980), 396-407 Zbl0439.20017MR573475
  3. Walter Feit, John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029 Zbl0124.26402MR166261
  4. Damien Gaboriau, Invariants l 2 de relations d’équivalence et de groupes, Publ. Math. Inst. Hautes Études Sci. (2002), 93-150 Zbl1022.37002MR1953191
  5. Antoine Gournay, A dynamical approach to von Neumann dimension, Discrete Contin. Dyn. Syst. 26 (2010), 967-987 Zbl1183.37012MR2600725
  6. Antoine Gournay, Further properties of p dimension, J. Funct. Anal. 266 (2014), 487-513 Zbl1298.43002MR3132720
  7. P. Hall, C. R. Kulatilaka, A property of locally finite groups, J. London Math. Soc. 39 (1964), 235-239 Zbl0136.27903MR161907
  8. Ben Hayes, An l p -version of von Neumann dimension for Banach space representations of sofic groups II Zbl06476734
  9. Ben Hayes, An l p -version of von Neumann dimension for Banach space representations of sofic groups, J. Funct. Anal. 266 (2014), 989-1040 Zbl1300.43002MR3132735
  10. Edwin Hewitt, Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, (1963), Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg Zbl0115.10603MR156915
  11. F. J. Murray, J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), 116-229 Zbl0014.16101MR1503275
  12. Pierre Pansu, L p -cohomology of symmetric spaces, Geometry, analysis and topology of discrete groups 6 (2008), 305-326, Int. Press, Somerville, MA Zbl1159.43003MR2464400
  13. Michael J. Puls, Zero divisors and L p ( G ) , Proc. Amer. Math. Soc. 126 (1998), 721-728 Zbl0886.43003MR1415362
  14. Sadahiro Saeki, On convolution squares of singular measures, Illinois J. Math. 24 (1980), 225-232 Zbl0496.42006MR575063
  15. Roman Sauer, L 2 -Betti numbers of discrete measured groupoids, Internat. J. Algebra Comput. 15 (2005), 1169-1188 Zbl1099.46045MR2197826
  16. J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250-270 Zbl0236.20032MR286898

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.