The Connes-Kasparov conjecture for almost connected groups and for linear -adic groups
Jérôme Chabert; Siegfried Echterhoff; Ryszard Nest
Publications Mathématiques de l'IHÉS (2003)
- Volume: 97, page 239-278
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topChabert, Jérôme, Echterhoff, Siegfried, and Nest, Ryszard. "The Connes-Kasparov conjecture for almost connected groups and for linear $p$-adic groups." Publications Mathématiques de l'IHÉS 97 (2003): 239-278. <http://eudml.org/doc/104191>.
@article{Chabert2003,
abstract = {Let G be a locally compact group with cocompact connected component. We prove that the assembly map from the topological K-theory of G to the K-theory of the reduced C*-algebra of G is an isomorphism. The same is shown for the groups of k-rational points of any linear algebraic group over a local field k of characteristic zero.},
author = {Chabert, Jérôme, Echterhoff, Siegfried, Nest, Ryszard},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Baum-Connes conjecture; assembly map; -theory; reduced group},
language = {eng},
pages = {239-278},
publisher = {Springer},
title = {The Connes-Kasparov conjecture for almost connected groups and for linear $p$-adic groups},
url = {http://eudml.org/doc/104191},
volume = {97},
year = {2003},
}
TY - JOUR
AU - Chabert, Jérôme
AU - Echterhoff, Siegfried
AU - Nest, Ryszard
TI - The Connes-Kasparov conjecture for almost connected groups and for linear $p$-adic groups
JO - Publications Mathématiques de l'IHÉS
PY - 2003
PB - Springer
VL - 97
SP - 239
EP - 278
AB - Let G be a locally compact group with cocompact connected component. We prove that the assembly map from the topological K-theory of G to the K-theory of the reduced C*-algebra of G is an isomorphism. The same is shown for the groups of k-rational points of any linear algebraic group over a local field k of characteristic zero.
LA - eng
KW - Baum-Connes conjecture; assembly map; -theory; reduced group
UR - http://eudml.org/doc/104191
ER -
References
top- 1. H. Abels, Parallelizability of proper actions, global K-slices and maximal compact subgroups, Math. Ann., 212 (1974), 1–19. Zbl0276.57019MR375264
- 2. M. Atiyah, R. Bott and A. Shapiro, Clifford Modules, Topology 3, Suppl. 1 (1964), 3–38. Zbl0146.19001MR167985
- 3. P. Baum, A. Connes and N. Higson, Classifying space for proper actions and K-theory of group C*-algebras, Contemp. Math., 167 (1994), 241–291. Zbl0830.46061MR1292018
- 4. P. Baum, N. Higson and R. Plymen, A proof of the Baum-Connes conjecture for p-adic GL(n), C. R. Acad. Sci. Paris, Sér. I, Math., 325, no. 2 (1997), 171–176. Zbl0918.46061MR1467072
- 5. B. Blackadar, K-theory for operator algebras, MSRI Pub. 5, Springer 1986. Zbl0597.46072MR859867
- 6. E. Blanchard, Deformations de C*-algebres de Hopf, Bull. Soc. Math. Fr., 124 (1996), 141–215. Zbl0851.46040MR1395009
- 7. J. Bochnak, M. Coste, and M.-F. Roy, Real algebraic geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 36, Springer 1998. Zbl0912.14023MR1659509
- 8. A. Borel, Linear Algebraic Groups, Springer, GTM 126 (1991). Zbl0726.20030MR1102012
- 9. A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. Math., 75 (1962), 485–535. Zbl0107.14804MR147566
- 10. A. Borel and J. Tits, Groupes reductifs, Inst. Hautes Études Sci., Publ. Math., 27 (1965), 55–150. Zbl0145.17402MR207712
- 11. J. Chabert and S. Echterhoff, Twisted equivariant KK-theory and the Baum-Connes conjecture for group extensions, K-Theory, 23 (2001), 157–200. Zbl1010.19004MR1857079
- 12. J. Chabert and S. Echterhoff, Permanence properties of the Baum-Connes conjecture, Doc. Math., 6 (2001), 127–183. Zbl0984.46047MR1836047
- 13. J. Chabert, S. Echterhoff and R. Meyer, Deux remarques sur la conjecture de Baum-Connes, C. R. Acad. Sci., Paris, Sér. I 332, no 7 (2001), 607–610. Zbl1003.46037MR1841893
- 14. J. Chabert, S. Echterhoff and H. Oyono-Oyono, Going-Down functors, the Künneth formula, and the Baum-Connes conjecture, Preprintreihe SFB 478, Münster. Zbl1063.46056MR2100669
- 15. P.-A. Cherix, M. Cowling, P. Jolisssaint, P. Julg and A. Valette, Groups with the Haagerup property, Progress in Mathematics 197, Birkhäuser 2000. Zbl1030.43002MR1852148
- 16. C. Chevalley, Theorie des groupes de Lie, Groupes algebriques, Theoremes generaux sur les algebres de Lie, 2ieme ed., Hermann & Cie. IX, Paris, 1968. Zbl0186.33104
- 17. A. Connes and H. Moscovici, The L2-index theorem for homogeneous spaces of Lie groups, Ann. Math., 115 (1982), 291–330. Zbl0515.58031MR647808
- 18. J. Dixmier, C*- algebras (English Edition). North Holland Publishing Company 1977. Zbl0372.46058
- 19. M. Duflo, Théorie de Mackey pour les groupes de Lie algébriques, Acta Math., 149 (1983), 153–213. Zbl0529.22011MR688348
- 20. S. Echterhoff, On induced covariant systems, Proc. Am. Math. Soc., 108 (1990), 703–708. Zbl0692.46054MR994776
- 21. S. Echterhoff, Morita equivalent actions and a new version of the Packer-Raeburn stabilization trick, J. Lond. Math. Soc., II. Ser., 50 (1994), 170–186. Zbl0807.46081MR1277761
- 22. G. Elliott, T. Natsume and R. Nest, The Heisenberg group and K-theory, K-Theory, 7 (1993), 409–428. Zbl0803.46076MR1255059
- 23. J. Fell, The structure of algebras of operator fields, Acta Math., 106 (1961), 233–280. Zbl0101.09301MR164248
- 24. J. Glimm, Locally compact transformation groups, Trans. Am. Math. Soc., 101 (1961), 124–138. Zbl0119.10802MR136681
- 25. P. Green, The local structure of twisted covariance algebras, Acta. Math., 140 (1978), 191–250. Zbl0407.46053MR493349
- 26. N. Higson and G. Kasparov, E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math., 144 (2001), 23–74. Zbl0988.19003MR1821144
- 27. G. P. Hochschild, Basic theory of algebraic groups and Lie algebras, Springer, GTM 75, 1981. Zbl0589.20025MR620024
- 28. R. Howe, The Fourier transform for nilpotent locally compact groups: I, Pac. J. Math., 73 (1977), 307–327. Zbl0396.43013MR492059
- 29. G. Kasparov, Operator K-theory and its applications: Elliptic operators, group representations, higher signatures, C*-extensions, in: Proc. Internat. Congress of Mathematicians, vol. 2, Warsaw, 1983, 987–1000. Zbl0571.46047MR804752
- 30. G. Kasparov, The operator K-functor and extensions of C*-algebras, Math. USSR Izvestija 16, no. 3 (1981), 513–572. Zbl0464.46054MR582160
- 31. G. Kasparov, K-theory, group C*-algebras, higher signatures (Conspectus), in: Novikov conjectures, index theorems and rigidity. Lond. Math. Soc., Lect. Note Ser., 226 (1995), 101–146. Zbl0957.58020MR1388299
- 32. G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math., 91 (1988), 147–201. Zbl0647.46053MR918241
- 33. G. Kasparov and G. Skandalis, Groups acting properly on “bolic” spaces and the Novikov conjecture, To appear in Ann. Math. Zbl1029.19003
- 34. E. Kirchberg and S. Wassermann, Exact groups and continuous bundles of C*-algebras, Math. Ann., 315 (1999), 169–203. Zbl0946.46054MR1721796
- 35. E. Kirchberg and S. Wassermann, Permanence properties of C*-exact groups, Doc. Math., 5 (2000), 513–558. Zbl0958.46036MR1725812
- 36. H. Kraft, P. Slodowy and T. A. Springer, Algebraische Transformationsgruppen und Invariantentheorie, DMV-Seminar, Band 13, Birkhäuser 1989. Zbl0682.00008MR1044582
- 37. V. Lafforgue, K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes, PhD Dissertation, Universite Paris Sud, 1999.
- 38. V. Lafforgue, K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes, Invent. Math., 149 (2002), 1–95. Zbl1084.19003MR1914617
- 39. V. Lafforgue, Banach KK-Theory and the Baum-Connes conjecture, Prog. Math., 202 (2001), 31–46. Zbl1030.19002MR1905349
- 40. V. Lafforgue, Banach KK-Theory and the Baum-Connes conjecture, in: Proc. Internat. Congress of Mathematicians, Vol. III, Beijing, 2002. Zbl0997.19003MR1957086
- 41. R. Y. Lee, On the C*-algebras of operator fields, Indiana Univ. Math. J., 25 (1976), 303–314. Zbl0322.46062MR410400
- 42. G. Lion and P. Perrin, Extension des Representations de groupe unipotents p-adiques, Calculs d’obstructions, Lect. Notes Math., 880 (1981), 337–356. Zbl0463.22014
- 43. C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. Math., 82 (1965), 146–182. Zbl0139.30702MR181701
- 44. G. Mackey, Borel structure in groups and their duals, Trans. Am. Math. Soc., 85 (1957), 134–165. Zbl0082.11201MR89999
- 45. D. Montgomery and L. Zippin, Topological transformation groups, Interscience Tracts in Pure and Applied Mathematics, New York: Interscience Publishers, Inc. XI, 1955. Zbl0068.01904MR73104
- 46. H. Oyono-Oyono, Baum-Connes conjecture and extensions, J. Reine Angew. Math., 532 (2001), 133–149. Zbl0973.46064MR1817505
- 47. J. Packer and I. Raeburn, Twisted crossed products of C*-algebras, Math. Proc. Camb. Philos. Soc., 106 (1989), 293–311. Zbl0757.46056MR1002543
- 48. G. K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, London, 1979. Zbl0416.46043MR548006
- 49. L. Pukánszky, Characters of connected Lie groups, Mathematical surveys and Monographs, Vol. 71, American Mathematical Society, Rhode Island 1999. Zbl0934.22002MR1707323
- 50. J. Rosenberg, Group C*-algebras and topological invariants, in: Operator algebras and group representations, Proc. Int. Conf., Neptun/Rom. 1980, Vol. II, Monogr. Stud. Math., 18 (1984), 95–115. Zbl0524.22009MR733308
- 51. M. Rosenlicht, A remark on quotient spaces, An. Acad. Bras. Ciênc., 35 (1963), 487–489. Zbl0123.13804MR171782
- 52. J.L. Tu, La conjecture de Novikov pour les feuilletages hyperboliques, K-theory, 16, no. 2 (1999), 129–184. Zbl0932.19005MR1671260
- 53. A. Valette, K-theory for the reduced C*-algebra of a semi-simple Lie group with real rank 1 and finite centre, Oxford Q. J. Math., 35 (1984), 341–359. Zbl0545.22006MR755672
- 54. A. Wassermann, Une demonstration de la conjecture of Connes-Kasparov pour les groupes de Lie lineaires connexes reductifs, C. R. Acad. Sci., Paris, Sér. I, Math., 304 (1987), 559–562. Zbl0615.22011MR894996
- 55. A. Weil, Basic number theory, Die Grundlehren der Mathematischen Wissenschaften, Band 144, Springer, New York-Berlin, 1974. Zbl0326.12001MR234930
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.