The Connes-Kasparov conjecture for almost connected groups and for linear p -adic groups

Jérôme Chabert; Siegfried Echterhoff; Ryszard Nest

Publications Mathématiques de l'IHÉS (2003)

  • Volume: 97, page 239-278
  • ISSN: 0073-8301

Abstract

top
Let G be a locally compact group with cocompact connected component. We prove that the assembly map from the topological K-theory of G to the K-theory of the reduced C*-algebra of G is an isomorphism. The same is shown for the groups of k-rational points of any linear algebraic group over a local field k of characteristic zero.

How to cite

top

Chabert, Jérôme, Echterhoff, Siegfried, and Nest, Ryszard. "The Connes-Kasparov conjecture for almost connected groups and for linear $p$-adic groups." Publications Mathématiques de l'IHÉS 97 (2003): 239-278. <http://eudml.org/doc/104191>.

@article{Chabert2003,
abstract = {Let G be a locally compact group with cocompact connected component. We prove that the assembly map from the topological K-theory of G to the K-theory of the reduced C*-algebra of G is an isomorphism. The same is shown for the groups of k-rational points of any linear algebraic group over a local field k of characteristic zero.},
author = {Chabert, Jérôme, Echterhoff, Siegfried, Nest, Ryszard},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Baum-Connes conjecture; assembly map; -theory; reduced group},
language = {eng},
pages = {239-278},
publisher = {Springer},
title = {The Connes-Kasparov conjecture for almost connected groups and for linear $p$-adic groups},
url = {http://eudml.org/doc/104191},
volume = {97},
year = {2003},
}

TY - JOUR
AU - Chabert, Jérôme
AU - Echterhoff, Siegfried
AU - Nest, Ryszard
TI - The Connes-Kasparov conjecture for almost connected groups and for linear $p$-adic groups
JO - Publications Mathématiques de l'IHÉS
PY - 2003
PB - Springer
VL - 97
SP - 239
EP - 278
AB - Let G be a locally compact group with cocompact connected component. We prove that the assembly map from the topological K-theory of G to the K-theory of the reduced C*-algebra of G is an isomorphism. The same is shown for the groups of k-rational points of any linear algebraic group over a local field k of characteristic zero.
LA - eng
KW - Baum-Connes conjecture; assembly map; -theory; reduced group
UR - http://eudml.org/doc/104191
ER -

References

top
  1. 1. H. Abels, Parallelizability of proper actions, global K-slices and maximal compact subgroups, Math. Ann., 212 (1974), 1–19. Zbl0276.57019MR375264
  2. 2. M. Atiyah, R. Bott and A. Shapiro, Clifford Modules, Topology 3, Suppl. 1 (1964), 3–38. Zbl0146.19001MR167985
  3. 3. P. Baum, A. Connes and N. Higson, Classifying space for proper actions and K-theory of group C*-algebras, Contemp. Math., 167 (1994), 241–291. Zbl0830.46061MR1292018
  4. 4. P. Baum, N. Higson and R. Plymen, A proof of the Baum-Connes conjecture for p-adic GL(n), C. R. Acad. Sci. Paris, Sér. I, Math., 325, no. 2 (1997), 171–176. Zbl0918.46061MR1467072
  5. 5. B. Blackadar, K-theory for operator algebras, MSRI Pub. 5, Springer 1986. Zbl0597.46072MR859867
  6. 6. E. Blanchard, Deformations de C*-algebres de Hopf, Bull. Soc. Math. Fr., 124 (1996), 141–215. Zbl0851.46040MR1395009
  7. 7. J. Bochnak, M. Coste, and M.-F. Roy, Real algebraic geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 36, Springer 1998. Zbl0912.14023MR1659509
  8. 8. A. Borel, Linear Algebraic Groups, Springer, GTM 126 (1991). Zbl0726.20030MR1102012
  9. 9. A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. Math., 75 (1962), 485–535. Zbl0107.14804MR147566
  10. 10. A. Borel and J. Tits, Groupes reductifs, Inst. Hautes Études Sci., Publ. Math., 27 (1965), 55–150. Zbl0145.17402MR207712
  11. 11. J. Chabert and S. Echterhoff, Twisted equivariant KK-theory and the Baum-Connes conjecture for group extensions, K-Theory, 23 (2001), 157–200. Zbl1010.19004MR1857079
  12. 12. J. Chabert and S. Echterhoff, Permanence properties of the Baum-Connes conjecture, Doc. Math., 6 (2001), 127–183. Zbl0984.46047MR1836047
  13. 13. J. Chabert, S. Echterhoff and R. Meyer, Deux remarques sur la conjecture de Baum-Connes, C. R. Acad. Sci., Paris, Sér. I 332, no 7 (2001), 607–610. Zbl1003.46037MR1841893
  14. 14. J. Chabert, S. Echterhoff and H. Oyono-Oyono, Going-Down functors, the Künneth formula, and the Baum-Connes conjecture, Preprintreihe SFB 478, Münster. Zbl1063.46056MR2100669
  15. 15. P.-A. Cherix, M. Cowling, P. Jolisssaint, P. Julg and A. Valette, Groups with the Haagerup property, Progress in Mathematics 197, Birkhäuser 2000. Zbl1030.43002MR1852148
  16. 16. C. Chevalley, Theorie des groupes de Lie, Groupes algebriques, Theoremes generaux sur les algebres de Lie, 2ieme ed., Hermann & Cie. IX, Paris, 1968. Zbl0186.33104
  17. 17. A. Connes and H. Moscovici, The L2-index theorem for homogeneous spaces of Lie groups, Ann. Math., 115 (1982), 291–330. Zbl0515.58031MR647808
  18. 18. J. Dixmier, C*- algebras (English Edition). North Holland Publishing Company 1977. Zbl0372.46058
  19. 19. M. Duflo, Théorie de Mackey pour les groupes de Lie algébriques, Acta Math., 149 (1983), 153–213. Zbl0529.22011MR688348
  20. 20. S. Echterhoff, On induced covariant systems, Proc. Am. Math. Soc., 108 (1990), 703–708. Zbl0692.46054MR994776
  21. 21. S. Echterhoff, Morita equivalent actions and a new version of the Packer-Raeburn stabilization trick, J. Lond. Math. Soc., II. Ser., 50 (1994), 170–186. Zbl0807.46081MR1277761
  22. 22. G. Elliott, T. Natsume and R. Nest, The Heisenberg group and K-theory, K-Theory, 7 (1993), 409–428. Zbl0803.46076MR1255059
  23. 23. J. Fell, The structure of algebras of operator fields, Acta Math., 106 (1961), 233–280. Zbl0101.09301MR164248
  24. 24. J. Glimm, Locally compact transformation groups, Trans. Am. Math. Soc., 101 (1961), 124–138. Zbl0119.10802MR136681
  25. 25. P. Green, The local structure of twisted covariance algebras, Acta. Math., 140 (1978), 191–250. Zbl0407.46053MR493349
  26. 26. N. Higson and G. Kasparov, E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math., 144 (2001), 23–74. Zbl0988.19003MR1821144
  27. 27. G. P. Hochschild, Basic theory of algebraic groups and Lie algebras, Springer, GTM 75, 1981. Zbl0589.20025MR620024
  28. 28. R. Howe, The Fourier transform for nilpotent locally compact groups: I, Pac. J. Math., 73 (1977), 307–327. Zbl0396.43013MR492059
  29. 29. G. Kasparov, Operator K-theory and its applications: Elliptic operators, group representations, higher signatures, C*-extensions, in: Proc. Internat. Congress of Mathematicians, vol. 2, Warsaw, 1983, 987–1000. Zbl0571.46047MR804752
  30. 30. G. Kasparov, The operator K-functor and extensions of C*-algebras, Math. USSR Izvestija 16, no. 3 (1981), 513–572. Zbl0464.46054MR582160
  31. 31. G. Kasparov, K-theory, group C*-algebras, higher signatures (Conspectus), in: Novikov conjectures, index theorems and rigidity. Lond. Math. Soc., Lect. Note Ser., 226 (1995), 101–146. Zbl0957.58020MR1388299
  32. 32. G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math., 91 (1988), 147–201. Zbl0647.46053MR918241
  33. 33. G. Kasparov and G. Skandalis, Groups acting properly on “bolic” spaces and the Novikov conjecture, To appear in Ann. Math. Zbl1029.19003
  34. 34. E. Kirchberg and S. Wassermann, Exact groups and continuous bundles of C*-algebras, Math. Ann., 315 (1999), 169–203. Zbl0946.46054MR1721796
  35. 35. E. Kirchberg and S. Wassermann, Permanence properties of C*-exact groups, Doc. Math., 5 (2000), 513–558. Zbl0958.46036MR1725812
  36. 36. H. Kraft, P. Slodowy and T. A. Springer, Algebraische Transformationsgruppen und Invariantentheorie, DMV-Seminar, Band 13, Birkhäuser 1989. Zbl0682.00008MR1044582
  37. 37. V. Lafforgue, K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes, PhD Dissertation, Universite Paris Sud, 1999. 
  38. 38. V. Lafforgue, K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes, Invent. Math., 149 (2002), 1–95. Zbl1084.19003MR1914617
  39. 39. V. Lafforgue, Banach KK-Theory and the Baum-Connes conjecture, Prog. Math., 202 (2001), 31–46. Zbl1030.19002MR1905349
  40. 40. V. Lafforgue, Banach KK-Theory and the Baum-Connes conjecture, in: Proc. Internat. Congress of Mathematicians, Vol. III, Beijing, 2002. Zbl0997.19003MR1957086
  41. 41. R. Y. Lee, On the C*-algebras of operator fields, Indiana Univ. Math. J., 25 (1976), 303–314. Zbl0322.46062MR410400
  42. 42. G. Lion and P. Perrin, Extension des Representations de groupe unipotents p-adiques, Calculs d’obstructions, Lect. Notes Math., 880 (1981), 337–356. Zbl0463.22014
  43. 43. C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. Math., 82 (1965), 146–182. Zbl0139.30702MR181701
  44. 44. G. Mackey, Borel structure in groups and their duals, Trans. Am. Math. Soc., 85 (1957), 134–165. Zbl0082.11201MR89999
  45. 45. D. Montgomery and L. Zippin, Topological transformation groups, Interscience Tracts in Pure and Applied Mathematics, New York: Interscience Publishers, Inc. XI, 1955. Zbl0068.01904MR73104
  46. 46. H. Oyono-Oyono, Baum-Connes conjecture and extensions, J. Reine Angew. Math., 532 (2001), 133–149. Zbl0973.46064MR1817505
  47. 47. J. Packer and I. Raeburn, Twisted crossed products of C*-algebras, Math. Proc. Camb. Philos. Soc., 106 (1989), 293–311. Zbl0757.46056MR1002543
  48. 48. G. K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, London, 1979. Zbl0416.46043MR548006
  49. 49. L. Pukánszky, Characters of connected Lie groups, Mathematical surveys and Monographs, Vol. 71, American Mathematical Society, Rhode Island 1999. Zbl0934.22002MR1707323
  50. 50. J. Rosenberg, Group C*-algebras and topological invariants, in: Operator algebras and group representations, Proc. Int. Conf., Neptun/Rom. 1980, Vol. II, Monogr. Stud. Math., 18 (1984), 95–115. Zbl0524.22009MR733308
  51. 51. M. Rosenlicht, A remark on quotient spaces, An. Acad. Bras. Ciênc., 35 (1963), 487–489. Zbl0123.13804MR171782
  52. 52. J.L. Tu, La conjecture de Novikov pour les feuilletages hyperboliques, K-theory, 16, no. 2 (1999), 129–184. Zbl0932.19005MR1671260
  53. 53. A. Valette, K-theory for the reduced C*-algebra of a semi-simple Lie group with real rank 1 and finite centre, Oxford Q. J. Math., 35 (1984), 341–359. Zbl0545.22006MR755672
  54. 54. A. Wassermann, Une demonstration de la conjecture of Connes-Kasparov pour les groupes de Lie lineaires connexes reductifs, C. R. Acad. Sci., Paris, Sér. I, Math., 304 (1987), 559–562. Zbl0615.22011MR894996
  55. 55. A. Weil, Basic number theory, Die Grundlehren der Mathematischen Wissenschaften, Band 144, Springer, New York-Berlin, 1974. Zbl0326.12001MR234930

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.