Déformations de C * -algèbres de Hopf

Etienne Blanchard

Bulletin de la Société Mathématique de France (1996)

  • Volume: 124, Issue: 1, page 141-215
  • ISSN: 0037-9484

How to cite

top

Blanchard, Etienne. "Déformations de $C^*$-algèbres de Hopf." Bulletin de la Société Mathématique de France 124.1 (1996): 141-215. <http://eudml.org/doc/87732>.

@article{Blanchard1996,
author = {Blanchard, Etienne},
journal = {Bulletin de la Société Mathématique de France},
keywords = {multiplicative unitary; Hilbert -modules; deformations of Hopf -algebras; continuous fields},
language = {fre},
number = {1},
pages = {141-215},
publisher = {Société mathématique de France},
title = {Déformations de $C^*$-algèbres de Hopf},
url = {http://eudml.org/doc/87732},
volume = {124},
year = {1996},
}

TY - JOUR
AU - Blanchard, Etienne
TI - Déformations de $C^*$-algèbres de Hopf
JO - Bulletin de la Société Mathématique de France
PY - 1996
PB - Société mathématique de France
VL - 124
IS - 1
SP - 141
EP - 215
LA - fre
KW - multiplicative unitary; Hilbert -modules; deformations of Hopf -algebras; continuous fields
UR - http://eudml.org/doc/87732
ER -

References

top
  1. [1] BAAJ (S.). — Thèse, Université Pierre et Marie Curie, Paris, 1980. 
  2. [2] BAAJ (S.). — Représentation régulière du groupe quantique Eμ(2) de Woronowicz, C. R. Acad. Sci. Paris, t. 314, 1992, p. 1021-1026. Zbl0771.17011MR93f:46106
  3. [3] BAAJ (S.). — Représentation régulière du groupe quantique des déplacements de Woronowicz, preprint. 
  4. [4] BAAJ (S.) et SKANDALIS (G.). — Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres, Ann. Sci. École Norm. Sup. (4), t. 26, 1993, p. 425-488. Zbl0804.46078MR94e:46127
  5. [5] BARTLE (R.G.) and GRAVES (L.M.). — Mappings between function spaces, Trans. Amer. Math. Soc., t. 72, 1952, p. 400-413. Zbl0047.10901MR13,951i
  6. [6] BAUVAL (A.). — Déformation du groupe de Lie-Poisson SU(2), prépublication n° 13 de l'URA 1408, Toulouse, 1992. 
  7. [7] BAUVAL (A.). — RKK(X)-nucléarité (d'après G. Skandalis), preprint. 
  8. [8] BLACKADAR (B.). — K-theory for Operator Algebras, Math. Sci. Res. Inst. Publ., t. 5, 1986. Zbl0597.46072MR88g:46082
  9. [9] BLANCHARD (E.). — Représentations de champs de C*-algèbres, C.R. Acad. Sci. Paris, t. 314, 1992, p. 911-914. Zbl0787.46042MR93f:46087
  10. [10] BOURBAKI (N.). — Espace vectoriels topologiques. — Hermann et Cie, Paris, 1955. 
  11. [11] CHOI (M.D.) and EFFROS (E.G.). — Nuclear C*-algebras and injectivity : the general case, Indiana Univ. Math. J., t. 26, 1977, p. 443-446. Zbl0378.46052MR55 #3799
  12. [12] COHEN (P.J.). — Factorization in group algebras, Duke Math. J., t. 26, 1959, p. 199-205. Zbl0085.10201MR21 #3729
  13. [13] CONNES (A.). — Classification of injective factors, Ann. of Math., t. 104, 1976, p. 73-115. Zbl0343.46042MR56 #12908
  14. [14] DIXMIER (J.). — Les C*-algèbres et leurs représentations. — Gauthiers-Villars, Paris, 1969. Zbl0174.18601MR39 #7442
  15. [15] DRINFEL'D (V.G.). — Quantum groups. — Proceedings of the I.C.M., Berkeley, California, 1986. 
  16. [16] DUPRÉ (M.J.). — The classification and structure of C*-algebra bundles, Mem. Amer. Math. Soc., t. 222, 1979. Zbl0416.46053MR83c:46069
  17. [17] EFFROS (E.G.) and LANCE (E.C.). — Tensor products of operator algebras, Adv. in Math., t. 25, 1977, p. 1-34. Zbl0372.46064MR56 #6402
  18. [18] ELLIOTT (G.), NATSUME (T.) and NEST (R.). — The Heisenberg Group and K-Theorie, K-Theory, t. 7, 1993, p. 409-428. Zbl0803.46076MR94m:46109
  19. [19] ENOCK (M.) et SCHWARTZ (J.M.). — Une dualité dans les algèbres de von Neumann, Mémoire Soc. Math. France, suppl. Bull., n° 44, 1975, p. 1-144. Zbl0343.46044MR56 #1091
  20. [20] ENOCK (M.) et SCHWARTZ (J.M.). — Algèbres de Kac moyennables, Pacific J. Math., t. 125, 2, 1986, p. 363-379. Zbl0597.43002MR88f:46126
  21. [21] FELL (J.M.G.). — The structure of algebras of operator fields, Acta Math., t. 106, 1962, p. 237-268. Zbl0101.09301
  22. [22] GELFAND (I.M.) and NAIRMARK (M.A.). — On the embedding of normed rings into the ring of operators in Hilbert space, Mat. Sb., t. 12, 1943, p. 197-213. Zbl0060.27006
  23. [23] GREEN (P.). — The local structure of twisted covariance algebras, Acta Math., t. 140, 1978, p. 191-250. Zbl0407.46053MR58 #12376
  24. [24] DE LA HARPE (P.) et VALETTE (A.). — La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque n° 175, 1989. 
  25. [25] KAC (G.I.). — Ring groups and the duality principle, Trans. Moscow Math. Soc., 1963, p. 291-339 (traduit de Trudy Moskov. Math. Obshch., t. 12, 1963, p. 259-301). Zbl0144.37902MR28 #164
  26. [26] KASPAROV (G.G.). — Hilbert C*-modules : theorems of Stinespring aand Voiculescu, J. Operator Theory, t. 4, 1980, p. 133-150. Zbl0456.46059MR82b:46074
  27. [27] KASPAROV (G.G.). — Equivariant KK-theory and the Novikov conjecture, Invent. Math., t. 91, 1988, p. 147-201. Zbl0647.46053MR88j:58123
  28. [28] KATAYAMA (Y.). — Takesaki's duality for a non degenerate coaction, Math. Scand., t. 55, 1985, p. 141-151. Zbl0598.46042MR86b:46112
  29. [29] KIRCHBERG (E.). — On non-semisplit extension, tensor products and exactness of group C*-algebras, Invent. Math., t. 112, 1993, p. 449-489. Zbl0803.46071MR94d:46058
  30. [30] KIRCHBERG (E.) and WASSERMANN (S.). — Operations on continuous bundles of C*-algebras, preprint. 
  31. [31] LANCE (C.). — Tensor product and nuclear C*-algebras, Operator Algebras and Applications, Proc. Sympos. Pure Math., t. 38, I, 1982, p. 379-399. Zbl0498.46044MR84b:46069
  32. [32] LEE (R.-Y.). — On the C*-algebras of operator fields, Indiana Univ. Math. J., t. 25, 1976, p. 303-314. Zbl0306.46073MR53 #14150
  33. [33] MASUDA (T.), MIMACHI (K.), NAKAGAMI (Y.), NOUMI (M.) and UENO (K.). — Representations of quantum groups and a q-analogue of orthogonal polynomials, C. R. Acad. Sci. Paris, t. 307, 1988, p. 559-564. Zbl0658.22010MR90a:17013
  34. [34] MICHAEL (E.). — Continuous selection I, Ann. Math., t. 63, 1956, p. 361-382. Zbl0071.15902MR17,990e
  35. [35] NAGY (G.). — A framework for deformation quantization, thesis, Berkeley, 1992. 
  36. [36] NAGY (G.). — On the Haar measure of the quantum SU(N) group, Comm. Math. Phys., t. 153, 1993, p. 217-228. Zbl0779.17015MR94e:46124
  37. [37] PASCHKE (W.). — Inner product modules over B*-algebras, Trans. Amer. Math. Soc., t. 182, 1973, p. 443-468. Zbl0239.46062MR50 #8087
  38. [38] PEDERSEN (G.K.). — C*-algebras and their automorphism groups. — Academic press, 1979. Zbl0416.46043MR81e:46037
  39. [39] PODLES (P.) and WORONOWICZ (S.L.). — Quantum deformation of Lorentz group, Comm. Math. Phys., t. 130, 1990, p. 381-431. Zbl0703.22018MR91f:46100
  40. [40] RIEFFEL (M.A.). — Continuous fields of C*-algebras coming from group cocycles and actions, Math. Ann., t. 283, 1989, p. 631-643. Zbl0646.46063MR90b:46120
  41. [41] RIEFFEL (M.A.). — Deformation quantization of Heisenberg manifolds, Comm. Math. Phys., t. 122, 1989, p. 531-562. Zbl0679.46055MR90e:46060
  42. [42] SHEU (J.L.). — Quantization of the Poisson SU(2) and its Poisson homogeneous space, the 2-sphere, Comm. Math. Phys., t. 135, 1991, p. 217-232. Zbl0719.58042MR91m:58011
  43. [43] SKANDALIS (G.). — Operator algebras and duality, Proc. Intern. Congr. Math., t. 2, 1990, p. 997-1009. Zbl0819.46054MR93d:46094
  44. [44] STRATILA (S.). — Modular theory in operator algebras. — Academiei and Abacus Press, 1981. Zbl0504.46043MR85g:46072
  45. [45] TAKESAKI (M.). — On the cross norm of the direct product of C*-algebras, Tôhoku Math. J., t. 16, 1964, p. 111-122. Zbl0127.07302MR29 #2668
  46. [46] TOMIYAMA (J.). — Topological representation of C*-algebras, Tôhoku Math. J., t. 14, 1962, p. 187-204. Zbl0216.16201MR26 #619
  47. [47] VALIN (J.M.). — C*-algèbres de Hopf et C*-algèbres de Kac, Proc. London Math. Soc. (3), t. 50, 1985, p. 131-174. Zbl0577.46063MR86f:46072
  48. [48] VOICULESCU (D.). — Amenability and Katz algebras, Algèbres d'opérateurs et leurs applications en physique mathématique, Colloq. Intern. CNRS, t. 274, 1977, p. 451-457. Zbl0503.46049MR83c:46065
  49. [49] WASSERMANN (S.). — C*-algebras associated with groups with Kazhdan's property T, Ann. Math., t. 134, 1991, p. 423-431. Zbl0754.46040MR92g:46085
  50. [50] WORONOWICZ (S.L.). — Compact matrix pseudogroups, Comm. Math. Phys., t. 111, 1987, p. 613-665. Zbl0627.58034MR88m:46079
  51. [51] WORONOWICZ (S.L.). — Twisted SU(2) group. An example of a non commutative calculus, Publ. Res. Inst. Math. Sci., t. 23, 1987, p. 117-181. Zbl0676.46050MR88h:46130
  52. [52] WORONOWICZ (S.L.). — Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) group, Invent. Math., t. 93, 1988, p. 35-76. Zbl0664.58044MR90e:22033
  53. [53] WORONOWICZ (S.L.). — Unbounded Elements Affiliated with C*-Algebras and Non-Compact Quantum Groups, Comm. Math. Phys., t. 136, 1991, p. 399-432. Zbl0743.46080MR92b:46117
  54. [54] WORONOWICZ (S.L.). — Compact quantum groups, preprint. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.