Indecomposable parabolic bundles

William Crawley-Boevey

Publications Mathématiques de l'IHÉS (2004)

  • Volume: 100, page 171-207
  • ISSN: 0073-8301

Abstract

top
We study the possible dimension vectors of indecomposable parabolic bundles on the projective line, and use our answer to solve the problem of characterizing those collections of conjugacy classes of n×n matrices for which one can find matrices in their closures whose product is equal to the identity matrix. Both answers depend on the root system of a Kac-Moody Lie algebra. Our proofs use Ringel’s theory of tubular algebras, work of Mihai on the existence of logarithmic connections, the Riemann-Hilbert correspondence and an algebraic version, due to Dettweiler and Reiter, of Katz’s middle convolution operation.

How to cite

top

Crawley-Boevey, William. "Indecomposable parabolic bundles." Publications Mathématiques de l'IHÉS 100 (2004): 171-207. <http://eudml.org/doc/104199>.

@article{Crawley2004,
abstract = {We study the possible dimension vectors of indecomposable parabolic bundles on the projective line, and use our answer to solve the problem of characterizing those collections of conjugacy classes of n×n matrices for which one can find matrices in their closures whose product is equal to the identity matrix. Both answers depend on the root system of a Kac-Moody Lie algebra. Our proofs use Ringel’s theory of tubular algebras, work of Mihai on the existence of logarithmic connections, the Riemann-Hilbert correspondence and an algebraic version, due to Dettweiler and Reiter, of Katz’s middle convolution operation.},
author = {Crawley-Boevey, William},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {conjugacy class; Deligne-Simpson problem; root system; Kac-Moody Lie algebra},
language = {eng},
pages = {171-207},
publisher = {Springer},
title = {Indecomposable parabolic bundles},
url = {http://eudml.org/doc/104199},
volume = {100},
year = {2004},
}

TY - JOUR
AU - Crawley-Boevey, William
TI - Indecomposable parabolic bundles
JO - Publications Mathématiques de l'IHÉS
PY - 2004
PB - Springer
VL - 100
SP - 171
EP - 207
AB - We study the possible dimension vectors of indecomposable parabolic bundles on the projective line, and use our answer to solve the problem of characterizing those collections of conjugacy classes of n×n matrices for which one can find matrices in their closures whose product is equal to the identity matrix. Both answers depend on the root system of a Kac-Moody Lie algebra. Our proofs use Ringel’s theory of tubular algebras, work of Mihai on the existence of logarithmic connections, the Riemann-Hilbert correspondence and an algebraic version, due to Dettweiler and Reiter, of Katz’s middle convolution operation.
LA - eng
KW - conjugacy class; Deligne-Simpson problem; root system; Kac-Moody Lie algebra
UR - http://eudml.org/doc/104199
ER -

References

top
  1. 1. S. Agnihotri and C. Woodward, Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Res. Lett., 5 (1998), 817–836. Zbl1004.14013MR1671192
  2. 2. M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Am. Math. Soc., 85 (1957), 181–207. Zbl0078.16002MR86359
  3. 3. P. Belkale, Local systems on P 1-S for S a finite set, Compos. Math., 129 (2001), 67–86. Zbl1042.14031MR1856023
  4. 4. I. Biswas, A criterion for the existence of a flat connection on a parabolic vector bundle, Adv. Geom., 2 (2002), 231–241. Zbl1013.14010MR1924757
  5. 5. S. Brenner and M. C. R. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, Representation Theory II (Ottawa, 1979), V. Dlab and P. Gabriel (eds.), Lect. Notes Math., 832, Springer, Berlin (1980), 103–169. Zbl0446.16031MR607151
  6. 6. D. Chan and C. Ingalls, Non-commutative coordinate rings and stacks, Proc. London Math. Soc., 88 (2004), 63–88. Zbl1052.14002MR2018958
  7. 7. W. Crawley-Boevey, Geometry of the moment map for representations of quivers, Compos. Math., 126 (2001), 257–293. Zbl1037.16007MR1834739
  8. 8. W. Crawley-Boevey, Normality of Marsden-Weinstein reductions for representations of quivers, Math. Ann., 325 (2003), 55–79. Zbl1063.16016MR1957264
  9. 9. W. Crawley-Boevey, On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J., 118 (2003), 339–352. Zbl1046.15013MR1980997
  10. 10. W. Crawley-Boevey and J. Schröer, Irreducible components of varieties of modules, J. Reine Angew. Math., 553 (2002), 201–220. Zbl1062.16019MR1944812
  11. 11. P. Deligne, Equations différentielles à points singuliers réguliers, Lect. Notes Math., 163, Springer, Berlin (1970). Zbl0244.14004MR417174
  12. 12. M. Dettweiler and S. Reiter, An algorithm of Katz and its application to the inverse Galois problem, J. Symb. Comput., 30 (2000), 761–798. Zbl1049.12005MR1800678
  13. 13. M. Furuta and B. Steer, Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann surfaces with marked points, Adv. Math., 96 (1992), 38–102. Zbl0769.58009MR1185787
  14. 14. W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, Singularities, representations of algebras, and vector bundles (Lambrecht, 1985), G.-M. Greuel and G. Trautmann (eds.), Lect. Notes Math., 1273, Springer, Berlin (1987), 265–297. Zbl0651.14006MR915180
  15. 15. M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices, III, Ann. Math., 70 (1959), 167–205. Zbl0168.28103MR113912
  16. 16. A. Haefliger, Local theory of meromorphic connections in dimension one (Fuchs theory), chapter III of A. Borel et al., Algebraic D-modules, Acad. Press, Boston (1987), 129–149. 
  17. 17. D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Am. Math. Soc., 120, no. 575 (1996). Zbl0849.16011MR1327209
  18. 18. V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math., 56 (1980), 57–92. Zbl0427.17001MR557581
  19. 19. V. G. Kac, Root systems, representations of quivers and invariant theory, Invariant theory (Montecatini, 1982), F. Gherardelli (ed.), Lect. Notes Math., 996, Springer, Berlin (1983), 74–108. Zbl0534.14004MR718127
  20. 20. N. M. Katz, Rigid local systems, Princeton University Press, Princeton, NJ (1996). Zbl0864.14013MR1366651
  21. 21. V. P. Kostov, On the existence of monodromy groups of Fuchsian systems on Riemann’s sphere with unipotent generators, J. Dynam. Control Systems, 2 (1996), 125–155. Zbl0948.34066
  22. 22. V. P. Kostov, On the Deligne-Simpson problem, C. R. Acad. Sci., Paris, Sér. I, Math., 329 (1999), 657–662. Zbl0937.20024MR1724102
  23. 23. V. P. Kostov, On some aspects of the Deligne-Simpson problem, J. Dynam. Control Systems, 9 (2003), 393–436. Zbl1031.15020MR1990242
  24. 24. V. P. Kostov, The Deligne-Simpson problem – a survey, preprint math.RA/0206298. Zbl1066.15016MR2091962
  25. 25. H. Kraft and Ch. Riedtmann, Geometry of representations of quivers, Representations of algebras (Durham, 1985), P. Webb (ed.) Lond. Math. Soc. Lect. Note Ser., 116, Cambridge Univ. Press (1986), 109–145. Zbl0632.16019MR897322
  26. 26. H. Lenzing, Representations of finite dimensional algebras and singularity theory, Trends in ring theory (Miskolc, Hungary, 1996), Canadian Math. Soc. Conf. Proc., 22 (1998), Am. Math. Soc., Providence, RI (1998), 71–97. Zbl0895.16003MR1491919
  27. 27. B. Malgrange, Regular connections, after Deligne, chapter IV of A. Borel et al., Algebraic D-modules, Acad. Press, Boston (1987), 151–172. 
  28. 28. V. B. Mehta and C. S. Seshadri, Moduli of vector bundles on curves with parabolic structure, Math. Ann., 248 (1980), 205–239. Zbl0454.14006MR575939
  29. 29. H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, Representations of algebras (Ottawa, 1992), Can. Math. Soc. Conf. Proc., 14 (1993), Am. Math. Soc., Providence, RI (1993), 313–337. Zbl0809.16012MR1265294
  30. 30. A. Mihai, Sur le résidue et la monodromie d’une connexion méromorphe, C. R. Acad. Sci., Paris, Sér. A, 281 (1975), 435–438. Zbl0323.53024
  31. 31. A. Mihai, Sur les connexions méromorphes, Rev. Roum. Math. Pures Appl., 23 (1978), 215–232. Zbl0379.53033MR491112
  32. 32. O. Neto and F. C. Silva, Singular regular differential equations and eigenvalues of products of matrices, Linear Multilinear Algebra, 46 (1999), 145–164. Zbl0935.15006MR1712857
  33. 33. C. M. Ringel, Tame algebras and integral quadratic forms, Lect. Notes Math., 1099, Springer, Berlin (1984). Zbl0546.16013MR774589
  34. 34. L. L. Scott, Matrices and cohomology, Ann. Math., 105 (1977), 473–492. Zbl0399.20047MR447434
  35. 35. C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque, 98 (1982), 1–209. Zbl0517.14008MR699278
  36. 36. C. T. Simpson, Products of Matrices, Differential geometry, global analysis, and topology (Halifax, NS, 1990), Can. Math. Soc. Conf. Proc., 12 (1992), Am. Math. Soc., Providence, RI (1991), 157–185. Zbl0756.15022MR1158474
  37. 37. K. Strambach and H. Völklein, On linearly rigid tuples, J. Reine Angew. Math., 510 (1999), 57–62. Zbl0931.12006MR1696090
  38. 38. H. Völklein, The braid group and linear rigidity, Geom. Dedicata, 84 (2001), 135–150. Zbl0990.20021MR1825350
  39. 39. A. Weil, Generalization de fonctions abeliennes, J. Math. Pures Appl., 17 (1938), 47–87. Zbl0018.06302JFM64.0361.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.