Indecomposable parabolic bundles
Publications Mathématiques de l'IHÉS (2004)
- Volume: 100, page 171-207
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topCrawley-Boevey, William. "Indecomposable parabolic bundles." Publications Mathématiques de l'IHÉS 100 (2004): 171-207. <http://eudml.org/doc/104199>.
@article{Crawley2004,
abstract = {We study the possible dimension vectors of indecomposable parabolic bundles on the projective line, and use our answer to solve the problem of characterizing those collections of conjugacy classes of n×n matrices for which one can find matrices in their closures whose product is equal to the identity matrix. Both answers depend on the root system of a Kac-Moody Lie algebra. Our proofs use Ringel’s theory of tubular algebras, work of Mihai on the existence of logarithmic connections, the Riemann-Hilbert correspondence and an algebraic version, due to Dettweiler and Reiter, of Katz’s middle convolution operation.},
author = {Crawley-Boevey, William},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {conjugacy class; Deligne-Simpson problem; root system; Kac-Moody Lie algebra},
language = {eng},
pages = {171-207},
publisher = {Springer},
title = {Indecomposable parabolic bundles},
url = {http://eudml.org/doc/104199},
volume = {100},
year = {2004},
}
TY - JOUR
AU - Crawley-Boevey, William
TI - Indecomposable parabolic bundles
JO - Publications Mathématiques de l'IHÉS
PY - 2004
PB - Springer
VL - 100
SP - 171
EP - 207
AB - We study the possible dimension vectors of indecomposable parabolic bundles on the projective line, and use our answer to solve the problem of characterizing those collections of conjugacy classes of n×n matrices for which one can find matrices in their closures whose product is equal to the identity matrix. Both answers depend on the root system of a Kac-Moody Lie algebra. Our proofs use Ringel’s theory of tubular algebras, work of Mihai on the existence of logarithmic connections, the Riemann-Hilbert correspondence and an algebraic version, due to Dettweiler and Reiter, of Katz’s middle convolution operation.
LA - eng
KW - conjugacy class; Deligne-Simpson problem; root system; Kac-Moody Lie algebra
UR - http://eudml.org/doc/104199
ER -
References
top- 1. S. Agnihotri and C. Woodward, Eigenvalues of products of unitary matrices and quantum Schubert calculus, Math. Res. Lett., 5 (1998), 817–836. Zbl1004.14013MR1671192
- 2. M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Am. Math. Soc., 85 (1957), 181–207. Zbl0078.16002MR86359
- 3. P. Belkale, Local systems on P 1-S for S a finite set, Compos. Math., 129 (2001), 67–86. Zbl1042.14031MR1856023
- 4. I. Biswas, A criterion for the existence of a flat connection on a parabolic vector bundle, Adv. Geom., 2 (2002), 231–241. Zbl1013.14010MR1924757
- 5. S. Brenner and M. C. R. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, Representation Theory II (Ottawa, 1979), V. Dlab and P. Gabriel (eds.), Lect. Notes Math., 832, Springer, Berlin (1980), 103–169. Zbl0446.16031MR607151
- 6. D. Chan and C. Ingalls, Non-commutative coordinate rings and stacks, Proc. London Math. Soc., 88 (2004), 63–88. Zbl1052.14002MR2018958
- 7. W. Crawley-Boevey, Geometry of the moment map for representations of quivers, Compos. Math., 126 (2001), 257–293. Zbl1037.16007MR1834739
- 8. W. Crawley-Boevey, Normality of Marsden-Weinstein reductions for representations of quivers, Math. Ann., 325 (2003), 55–79. Zbl1063.16016MR1957264
- 9. W. Crawley-Boevey, On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J., 118 (2003), 339–352. Zbl1046.15013MR1980997
- 10. W. Crawley-Boevey and J. Schröer, Irreducible components of varieties of modules, J. Reine Angew. Math., 553 (2002), 201–220. Zbl1062.16019MR1944812
- 11. P. Deligne, Equations différentielles à points singuliers réguliers, Lect. Notes Math., 163, Springer, Berlin (1970). Zbl0244.14004MR417174
- 12. M. Dettweiler and S. Reiter, An algorithm of Katz and its application to the inverse Galois problem, J. Symb. Comput., 30 (2000), 761–798. Zbl1049.12005MR1800678
- 13. M. Furuta and B. Steer, Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann surfaces with marked points, Adv. Math., 96 (1992), 38–102. Zbl0769.58009MR1185787
- 14. W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, Singularities, representations of algebras, and vector bundles (Lambrecht, 1985), G.-M. Greuel and G. Trautmann (eds.), Lect. Notes Math., 1273, Springer, Berlin (1987), 265–297. Zbl0651.14006MR915180
- 15. M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices, III, Ann. Math., 70 (1959), 167–205. Zbl0168.28103MR113912
- 16. A. Haefliger, Local theory of meromorphic connections in dimension one (Fuchs theory), chapter III of A. Borel et al., Algebraic D-modules, Acad. Press, Boston (1987), 129–149.
- 17. D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Am. Math. Soc., 120, no. 575 (1996). Zbl0849.16011MR1327209
- 18. V. G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math., 56 (1980), 57–92. Zbl0427.17001MR557581
- 19. V. G. Kac, Root systems, representations of quivers and invariant theory, Invariant theory (Montecatini, 1982), F. Gherardelli (ed.), Lect. Notes Math., 996, Springer, Berlin (1983), 74–108. Zbl0534.14004MR718127
- 20. N. M. Katz, Rigid local systems, Princeton University Press, Princeton, NJ (1996). Zbl0864.14013MR1366651
- 21. V. P. Kostov, On the existence of monodromy groups of Fuchsian systems on Riemann’s sphere with unipotent generators, J. Dynam. Control Systems, 2 (1996), 125–155. Zbl0948.34066
- 22. V. P. Kostov, On the Deligne-Simpson problem, C. R. Acad. Sci., Paris, Sér. I, Math., 329 (1999), 657–662. Zbl0937.20024MR1724102
- 23. V. P. Kostov, On some aspects of the Deligne-Simpson problem, J. Dynam. Control Systems, 9 (2003), 393–436. Zbl1031.15020MR1990242
- 24. V. P. Kostov, The Deligne-Simpson problem – a survey, preprint math.RA/0206298. Zbl1066.15016MR2091962
- 25. H. Kraft and Ch. Riedtmann, Geometry of representations of quivers, Representations of algebras (Durham, 1985), P. Webb (ed.) Lond. Math. Soc. Lect. Note Ser., 116, Cambridge Univ. Press (1986), 109–145. Zbl0632.16019MR897322
- 26. H. Lenzing, Representations of finite dimensional algebras and singularity theory, Trends in ring theory (Miskolc, Hungary, 1996), Canadian Math. Soc. Conf. Proc., 22 (1998), Am. Math. Soc., Providence, RI (1998), 71–97. Zbl0895.16003MR1491919
- 27. B. Malgrange, Regular connections, after Deligne, chapter IV of A. Borel et al., Algebraic D-modules, Acad. Press, Boston (1987), 151–172.
- 28. V. B. Mehta and C. S. Seshadri, Moduli of vector bundles on curves with parabolic structure, Math. Ann., 248 (1980), 205–239. Zbl0454.14006MR575939
- 29. H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, Representations of algebras (Ottawa, 1992), Can. Math. Soc. Conf. Proc., 14 (1993), Am. Math. Soc., Providence, RI (1993), 313–337. Zbl0809.16012MR1265294
- 30. A. Mihai, Sur le résidue et la monodromie d’une connexion méromorphe, C. R. Acad. Sci., Paris, Sér. A, 281 (1975), 435–438. Zbl0323.53024
- 31. A. Mihai, Sur les connexions méromorphes, Rev. Roum. Math. Pures Appl., 23 (1978), 215–232. Zbl0379.53033MR491112
- 32. O. Neto and F. C. Silva, Singular regular differential equations and eigenvalues of products of matrices, Linear Multilinear Algebra, 46 (1999), 145–164. Zbl0935.15006MR1712857
- 33. C. M. Ringel, Tame algebras and integral quadratic forms, Lect. Notes Math., 1099, Springer, Berlin (1984). Zbl0546.16013MR774589
- 34. L. L. Scott, Matrices and cohomology, Ann. Math., 105 (1977), 473–492. Zbl0399.20047MR447434
- 35. C. S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque, 98 (1982), 1–209. Zbl0517.14008MR699278
- 36. C. T. Simpson, Products of Matrices, Differential geometry, global analysis, and topology (Halifax, NS, 1990), Can. Math. Soc. Conf. Proc., 12 (1992), Am. Math. Soc., Providence, RI (1991), 157–185. Zbl0756.15022MR1158474
- 37. K. Strambach and H. Völklein, On linearly rigid tuples, J. Reine Angew. Math., 510 (1999), 57–62. Zbl0931.12006MR1696090
- 38. H. Völklein, The braid group and linear rigidity, Geom. Dedicata, 84 (2001), 135–150. Zbl0990.20021MR1825350
- 39. A. Weil, Generalization de fonctions abeliennes, J. Math. Pures Appl., 17 (1938), 47–87. Zbl0018.06302JFM64.0361.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.