The Novikov conjecture for linear groups
Erik Guentner; Nigel Higson; Shmuel Weinberger
Publications Mathématiques de l'IHÉS (2005)
- Volume: 101, page 243-268
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topGuentner, Erik, Higson, Nigel, and Weinberger, Shmuel. "The Novikov conjecture for linear groups." Publications Mathématiques de l'IHÉS 101 (2005): 243-268. <http://eudml.org/doc/104211>.
@article{Guentner2005,
abstract = {Let K be a field. We show that every countable subgroup of GL(n,K) is uniformly embeddable in a Hilbert space. This implies that Novikov’s higher signature conjecture holds for these groups. We also show that every countable subgroup of GL(2,K) admits a proper, affine isometric action on a Hilbert space. This implies that the Baum-Connes conjecture holds for these groups. Finally, we show that every subgroup of GL(n,K) is exact, in the sense of C*-algebra theory.},
author = {Guentner, Erik, Higson, Nigel, Weinberger, Shmuel},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Novikov conjecture; Baum-Connes map; uniform embeddability},
language = {eng},
pages = {243-268},
publisher = {Springer},
title = {The Novikov conjecture for linear groups},
url = {http://eudml.org/doc/104211},
volume = {101},
year = {2005},
}
TY - JOUR
AU - Guentner, Erik
AU - Higson, Nigel
AU - Weinberger, Shmuel
TI - The Novikov conjecture for linear groups
JO - Publications Mathématiques de l'IHÉS
PY - 2005
PB - Springer
VL - 101
SP - 243
EP - 268
AB - Let K be a field. We show that every countable subgroup of GL(n,K) is uniformly embeddable in a Hilbert space. This implies that Novikov’s higher signature conjecture holds for these groups. We also show that every countable subgroup of GL(2,K) admits a proper, affine isometric action on a Hilbert space. This implies that the Baum-Connes conjecture holds for these groups. Finally, we show that every subgroup of GL(n,K) is exact, in the sense of C*-algebra theory.
LA - eng
KW - Novikov conjecture; Baum-Connes map; uniform embeddability
UR - http://eudml.org/doc/104211
ER -
References
top- 1. R. Alperin, P. Shalen, Linear groups of finite cohomological dimension. Invent. Math., 66 (1982), 89–98. Zbl0497.20042MR652648
- 2. C. Anantharaman-Delaroche, Amenability and exactness for dynamical systems and their C*-algebras. Trans. Amer. Math. Soc., 354 (2002), 4153–4178 (electronic). Zbl1035.46039MR1926869
- 3. M. F. Atiyah, V. K. Patodi, I. M. Singer, Spectral asymmetry and Riemannian geometry, I. Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69. Zbl0297.58008MR397797
- 4. M. F. Atiyah, V. K. Patodi, I. M. Singer, Spectral asymmetry and Riemannian geometry, II. Math. Proc. Cambridge Philos. Soc., 78 (1975), 405–432. Zbl0314.58016MR397798
- 5. N. Bourbaki, Commutative algebra. Berlin: Springer 1989.
- 6. P. Baum, A. Connes, N. Higson, Classifying space for proper actions and K-theory of group C*-algebras, in C*-algebras: 1943–1993 (San Antonio, TX, 1993), vol. 167 of Contemp. Math., pp. 240–291. Providence, RI: Am. Math. Soc. 1994. Zbl0830.46061MR1292018
- 7. M. E. B. Bekka, P.-A. Cherix, A. Valette, Proper affine isometric actions of amenable groups, in Novikov conjectures, index theorems and rigidity, vol. 2 (Oberwolfach, 1993), vol. 227 of London Math. Soc. Lecture Note Ser., pp. 1–4. Cambridge: Cambridge Univ. Press 1995. Zbl0959.43001MR1388307
- 8. K. S. Brown, Buildings. New York: Springer 1989. Zbl0715.20017MR969123
- 9. J. W. S. Cassels, Local fields, vol. 3 of London Mathematical Society Student Texts. Cambridge: Cambridge University Press 1986. Zbl0595.12006MR861410
- 10. P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg, A. Valette, Groups with the Haagerup property, vol. 197 of Progress in Mathematics. Basel: Birkhäuser 2001. Gromov’s a-T-menability. Zbl1030.43002
- 11. M. Dadarlat, E. Guentner, Constructions preserving Hilbert space uniform embeddability of discrete groups. Trans. Amer. Math. Soc., 355 (2003), 3235–3275. Zbl1028.46104MR1974686
- 12. P. de La Harpe, A. Valette, La propriété (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger). Astérisque, 175 (1989). With an appendix by M. Burger. Zbl0759.22001MR1023471
- 13. P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, vol. 11 of Mathematics Lecture Series. Publish or Perish, Inc. 1984. Zbl0565.58035MR783634
- 14. M. Gromov, Asymptotic invariants of infinite groups, in Geometric group theory, vol. 2 (Sussex, 1991), vol. 182 of London Math. Soc. Lecture Note Ser., pp. 1–295. Cambrige: Cambridge Univ. Press 1993. Zbl0841.20039MR1253544
- 15. E. Guentner, J. Kaminker, Exactness and the Novikov conjecture and addendum. Topology, 41 (2002), 411–419. Zbl0992.58002MR1876896
- 16. U. Haagerup, An example of a nonnuclear C*-algebra, which has the metric approximation property. Invent. Math., 50 (1978/79), 279–293. Zbl0408.46046MR520930
- 17. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, vol. 80 of Pure and Applied Mathematics. New York: Academic Press 1978. Zbl0451.53038MR514561
- 18. N. Higson, Bivariant K-theory and the Novikov conjecture. Geom. Funct. Anal., 10 (2000), 563–581. Zbl0962.46052MR1779613
- 19. N. Higson, G. Kasparov, Operator K-theory for groups which act properly and isometrically on Hilbert space. Electron. Res. Announc. Amer. Math. Soc., 3 (1997), 131–142 (electronic). Zbl0888.46046MR1487204
- 20. N. Higson, G. Kasparov, E-theory and KK-theory for groups which act properly and isometrically on Hilbert space. Invent. Math., 144 (2001), 23–74. Zbl0988.19003MR1821144
- 21. G. G. Kasparov, Equivariant KK-theory and the Novikov conjecture. Invent. Math., 91 (1988), 147–201. Zbl0647.46053MR918241
- 22. G. G. Kasparov, G. Skandalis, Groups acting on buildings, operator K-theory, and Novikov’s conjecture. K-Theory, 4 (1991), 303–337. Zbl0738.46035
- 23. E. Kirchberg, S. Wassermann, Permanence properties of C*-exact groups. Doc. Math., 4 (1999), 513–558 (electronic). Zbl0958.46036MR1725812
- 24. S. Lang, Algebra, 2nd edn. Menlo Park, CA: Addison-Wesley 1984. Zbl0848.13001MR197234
- 25. W. Lück, R. Stamm, Computations of K- and L-theory of cocompact planar groups. K-Theory, 21 (2000), 249–292. Zbl0979.19003MR1803230
- 26. I. Madsen, R. J. Milgram, The classifying spaces of surgery and cobordism of topological manifolds. Princeton Univ. Press 1970. Zbl0446.57002
- 27. N. Ozawa, Amenable actions and exactness for discrete groups. C. R. Acad. Sci. Paris, Sér. I, Math., 330 (2000), 691–695. Zbl0953.43001MR1763912
- 28. M. Pimsner, D. Voiculescu, Exact sequences for K-groups and Ext-groups of certain cross-product C*-algebras. J. Oper. Theory, 4 (1980), 93–118. Zbl0474.46059MR587369
- 29. J. P. Serre, Trees. Translated from the French by J. Stillwell. Berlin: Springer 1980. Zbl0548.20018MR607504
- 30. G. Skandalis, J. L. Tu, G. Yu, The coarse Baum-Connes conjecture and groupoids. Topology, 41 (2002), 807–834. Zbl1033.19003MR1905840
- 31. S. Wassermann, C*- exact groups, in C*-algebras (Münster, 1999), pp. 243–249. Berlin: Springer 2000. Zbl0986.46044MR1798600
- 32. S. Weinberger, Homotopy invariance of η-invariants. Proc. Natl. Acad. Sci., 85 (1988), 5362–5363. Zbl0659.57016
- 33. S. Weinberger, Rationality of ρ-invariants. Math. Z., 223 (1996), 197–246. Appendix to “Jumps of the eta-invariant”, by M. Farber and J. Levine. Zbl0867.57027
- 34. G. Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math., 139 (2000), 201–240. Zbl0956.19004MR1728880
- 35. R. J. Zimmer, Kazhdan groups acting on compact manifolds. Invent. Math., 75 (1984), 425–436. Zbl0576.22014MR735334
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.