The Novikov conjecture for linear groups

Erik Guentner; Nigel Higson; Shmuel Weinberger

Publications Mathématiques de l'IHÉS (2005)

  • Volume: 101, page 243-268
  • ISSN: 0073-8301

Abstract

top
Let K be a field. We show that every countable subgroup of GL(n,K) is uniformly embeddable in a Hilbert space. This implies that Novikov’s higher signature conjecture holds for these groups. We also show that every countable subgroup of GL(2,K) admits a proper, affine isometric action on a Hilbert space. This implies that the Baum-Connes conjecture holds for these groups. Finally, we show that every subgroup of GL(n,K) is exact, in the sense of C*-algebra theory.

How to cite

top

Guentner, Erik, Higson, Nigel, and Weinberger, Shmuel. "The Novikov conjecture for linear groups." Publications Mathématiques de l'IHÉS 101 (2005): 243-268. <http://eudml.org/doc/104211>.

@article{Guentner2005,
abstract = {Let K be a field. We show that every countable subgroup of GL(n,K) is uniformly embeddable in a Hilbert space. This implies that Novikov’s higher signature conjecture holds for these groups. We also show that every countable subgroup of GL(2,K) admits a proper, affine isometric action on a Hilbert space. This implies that the Baum-Connes conjecture holds for these groups. Finally, we show that every subgroup of GL(n,K) is exact, in the sense of C*-algebra theory.},
author = {Guentner, Erik, Higson, Nigel, Weinberger, Shmuel},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Novikov conjecture; Baum-Connes map; uniform embeddability},
language = {eng},
pages = {243-268},
publisher = {Springer},
title = {The Novikov conjecture for linear groups},
url = {http://eudml.org/doc/104211},
volume = {101},
year = {2005},
}

TY - JOUR
AU - Guentner, Erik
AU - Higson, Nigel
AU - Weinberger, Shmuel
TI - The Novikov conjecture for linear groups
JO - Publications Mathématiques de l'IHÉS
PY - 2005
PB - Springer
VL - 101
SP - 243
EP - 268
AB - Let K be a field. We show that every countable subgroup of GL(n,K) is uniformly embeddable in a Hilbert space. This implies that Novikov’s higher signature conjecture holds for these groups. We also show that every countable subgroup of GL(2,K) admits a proper, affine isometric action on a Hilbert space. This implies that the Baum-Connes conjecture holds for these groups. Finally, we show that every subgroup of GL(n,K) is exact, in the sense of C*-algebra theory.
LA - eng
KW - Novikov conjecture; Baum-Connes map; uniform embeddability
UR - http://eudml.org/doc/104211
ER -

References

top
  1. 1. R. Alperin, P. Shalen, Linear groups of finite cohomological dimension. Invent. Math., 66 (1982), 89–98. Zbl0497.20042MR652648
  2. 2. C. Anantharaman-Delaroche, Amenability and exactness for dynamical systems and their C*-algebras. Trans. Amer. Math. Soc., 354 (2002), 4153–4178 (electronic). Zbl1035.46039MR1926869
  3. 3. M. F. Atiyah, V. K. Patodi, I. M. Singer, Spectral asymmetry and Riemannian geometry, I. Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69. Zbl0297.58008MR397797
  4. 4. M. F. Atiyah, V. K. Patodi, I. M. Singer, Spectral asymmetry and Riemannian geometry, II. Math. Proc. Cambridge Philos. Soc., 78 (1975), 405–432. Zbl0314.58016MR397798
  5. 5. N. Bourbaki, Commutative algebra. Berlin: Springer 1989. 
  6. 6. P. Baum, A. Connes, N. Higson, Classifying space for proper actions and K-theory of group C*-algebras, in C*-algebras: 1943–1993 (San Antonio, TX, 1993), vol. 167 of Contemp. Math., pp. 240–291. Providence, RI: Am. Math. Soc. 1994. Zbl0830.46061MR1292018
  7. 7. M. E. B. Bekka, P.-A. Cherix, A. Valette, Proper affine isometric actions of amenable groups, in Novikov conjectures, index theorems and rigidity, vol. 2 (Oberwolfach, 1993), vol. 227 of London Math. Soc. Lecture Note Ser., pp. 1–4. Cambridge: Cambridge Univ. Press 1995. Zbl0959.43001MR1388307
  8. 8. K. S. Brown, Buildings. New York: Springer 1989. Zbl0715.20017MR969123
  9. 9. J. W. S. Cassels, Local fields, vol. 3 of London Mathematical Society Student Texts. Cambridge: Cambridge University Press 1986. Zbl0595.12006MR861410
  10. 10. P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg, A. Valette, Groups with the Haagerup property, vol. 197 of Progress in Mathematics. Basel: Birkhäuser 2001. Gromov’s a-T-menability. Zbl1030.43002
  11. 11. M. Dadarlat, E. Guentner, Constructions preserving Hilbert space uniform embeddability of discrete groups. Trans. Amer. Math. Soc., 355 (2003), 3235–3275. Zbl1028.46104MR1974686
  12. 12. P. de La Harpe, A. Valette, La propriété (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger). Astérisque, 175 (1989). With an appendix by M. Burger. Zbl0759.22001MR1023471
  13. 13. P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, vol. 11 of Mathematics Lecture Series. Publish or Perish, Inc. 1984. Zbl0565.58035MR783634
  14. 14. M. Gromov, Asymptotic invariants of infinite groups, in Geometric group theory, vol. 2 (Sussex, 1991), vol. 182 of London Math. Soc. Lecture Note Ser., pp. 1–295. Cambrige: Cambridge Univ. Press 1993. Zbl0841.20039MR1253544
  15. 15. E. Guentner, J. Kaminker, Exactness and the Novikov conjecture and addendum. Topology, 41 (2002), 411–419. Zbl0992.58002MR1876896
  16. 16. U. Haagerup, An example of a nonnuclear C*-algebra, which has the metric approximation property. Invent. Math., 50 (1978/79), 279–293. Zbl0408.46046MR520930
  17. 17. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, vol. 80 of Pure and Applied Mathematics. New York: Academic Press 1978. Zbl0451.53038MR514561
  18. 18. N. Higson, Bivariant K-theory and the Novikov conjecture. Geom. Funct. Anal., 10 (2000), 563–581. Zbl0962.46052MR1779613
  19. 19. N. Higson, G. Kasparov, Operator K-theory for groups which act properly and isometrically on Hilbert space. Electron. Res. Announc. Amer. Math. Soc., 3 (1997), 131–142 (electronic). Zbl0888.46046MR1487204
  20. 20. N. Higson, G. Kasparov, E-theory and KK-theory for groups which act properly and isometrically on Hilbert space. Invent. Math., 144 (2001), 23–74. Zbl0988.19003MR1821144
  21. 21. G. G. Kasparov, Equivariant KK-theory and the Novikov conjecture. Invent. Math., 91 (1988), 147–201. Zbl0647.46053MR918241
  22. 22. G. G. Kasparov, G. Skandalis, Groups acting on buildings, operator K-theory, and Novikov’s conjecture. K-Theory, 4 (1991), 303–337. Zbl0738.46035
  23. 23. E. Kirchberg, S. Wassermann, Permanence properties of C*-exact groups. Doc. Math., 4 (1999), 513–558 (electronic). Zbl0958.46036MR1725812
  24. 24. S. Lang, Algebra, 2nd edn. Menlo Park, CA: Addison-Wesley 1984. Zbl0848.13001MR197234
  25. 25. W. Lück, R. Stamm, Computations of K- and L-theory of cocompact planar groups. K-Theory, 21 (2000), 249–292. Zbl0979.19003MR1803230
  26. 26. I. Madsen, R. J. Milgram, The classifying spaces of surgery and cobordism of topological manifolds. Princeton Univ. Press 1970. Zbl0446.57002
  27. 27. N. Ozawa, Amenable actions and exactness for discrete groups. C. R. Acad. Sci. Paris, Sér. I, Math., 330 (2000), 691–695. Zbl0953.43001MR1763912
  28. 28. M. Pimsner, D. Voiculescu, Exact sequences for K-groups and Ext-groups of certain cross-product C*-algebras. J. Oper. Theory, 4 (1980), 93–118. Zbl0474.46059MR587369
  29. 29. J. P. Serre, Trees. Translated from the French by J. Stillwell. Berlin: Springer 1980. Zbl0548.20018MR607504
  30. 30. G. Skandalis, J. L. Tu, G. Yu, The coarse Baum-Connes conjecture and groupoids. Topology, 41 (2002), 807–834. Zbl1033.19003MR1905840
  31. 31. S. Wassermann, C*- exact groups, in C*-algebras (Münster, 1999), pp. 243–249. Berlin: Springer 2000. Zbl0986.46044MR1798600
  32. 32. S. Weinberger, Homotopy invariance of η-invariants. Proc. Natl. Acad. Sci., 85 (1988), 5362–5363. Zbl0659.57016
  33. 33. S. Weinberger, Rationality of ρ-invariants. Math. Z., 223 (1996), 197–246. Appendix to “Jumps of the eta-invariant”, by M. Farber and J. Levine. Zbl0867.57027
  34. 34. G. Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math., 139 (2000), 201–240. Zbl0956.19004MR1728880
  35. 35. R. J. Zimmer, Kazhdan groups acting on compact manifolds. Invent. Math., 75 (1984), 425–436. Zbl0576.22014MR735334

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.