Holomorphic actions, Kummer examples, and Zimmer program
Serge Cantat; Abdelghani Zeghib
Annales scientifiques de l'École Normale Supérieure (2012)
- Volume: 45, Issue: 3, page 447-489
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topCantat, Serge, and Zeghib, Abdelghani. "Holomorphic actions, Kummer examples, and Zimmer program." Annales scientifiques de l'École Normale Supérieure 45.3 (2012): 447-489. <http://eudml.org/doc/272153>.
@article{Cantat2012,
abstract = {We classify compact Kähler manifolds $M$ of dimension $n\ge 3$ on which acts a lattice of an almost simple real Lie group of rank $\ge n-1$. This provides a new line in the so-called Zimmer program, and characterizes certain complex tori as compact Kähler manifolds with large automorphisms groups.},
author = {Cantat, Serge, Zeghib, Abdelghani},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {lattices; superrigidity; complex tori; automorphism groups; Hodge theory; invariant cones; holomorphic dynamics},
language = {eng},
number = {3},
pages = {447-489},
publisher = {Société mathématique de France},
title = {Holomorphic actions, Kummer examples, and Zimmer program},
url = {http://eudml.org/doc/272153},
volume = {45},
year = {2012},
}
TY - JOUR
AU - Cantat, Serge
AU - Zeghib, Abdelghani
TI - Holomorphic actions, Kummer examples, and Zimmer program
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2012
PB - Société mathématique de France
VL - 45
IS - 3
SP - 447
EP - 489
AB - We classify compact Kähler manifolds $M$ of dimension $n\ge 3$ on which acts a lattice of an almost simple real Lie group of rank $\ge n-1$. This provides a new line in the so-called Zimmer program, and characterizes certain complex tori as compact Kähler manifolds with large automorphisms groups.
LA - eng
KW - lattices; superrigidity; complex tori; automorphism groups; Hodge theory; invariant cones; holomorphic dynamics
UR - http://eudml.org/doc/272153
ER -
References
top- [1] H. Abels, G. A. Margulis & G. A. Soifer, Semigroups containing proximal linear maps, Israel J. Math.91 (1995), 1–30. Zbl0845.22004MR1348303
- [2] D. N. Akhiezer, Lie group actions in complex analysis, Aspects of Mathematics, E27, Friedr. Vieweg & Sohn, 1995. Zbl0845.22001MR1334091
- [3] B. Bekka, P. de la Harpe & A. Valette, Kazhdan’s property (T), New Mathematical Monographs 11, Cambridge Univ. Press, 2008. Zbl1146.22009MR2415834
- [4] Y. Benoist, Sous-groupes discrets des groupes de Lie, in European Summer School in Group Theory, 1997, 1–72.
- [5] Y. Benoist, Automorphismes des cônes convexes, Invent. Math.141 (2000), 149–193. Zbl0957.22008MR1767272
- [6] Y. Benoist, Réseaux des groupes de Lie, cours de Master 2, Université Paris VI, p. 1–72, 2008.
- [7] R. Berman & J.-P. Demailly, Regularity of plurisubharmonic upper envelopes in big cohomology classes, in Perspectives in analysis, geometry, and topology, Progr. Math. 296, Birkhäuser, 2012, 39–66. Zbl1258.32010MR2884031
- [8] A. L. Besse, Einstein manifolds, Classics in Mathematics, Springer, 2008. Zbl1147.53001MR2371700
- [9] C. Birkenhake & H. Lange, Complex tori, Progress in Math. 177, Birkhäuser, 1999. Zbl0945.14027MR1713785
- [10] C. Birkenhake & H. Lange, Complex Abelian varieties, 2nd éd., Grund. Math. Wiss. 302, Springer, 2004. Zbl1056.14063MR2062673
- [11] S. Bochner & D. Montgomery, Locally compact groups of differentiable transformations, Ann. of Math.47 (1946), 639–653. Zbl0061.04407MR18187
- [12] A. Borel, Les bouts des espaces homogènes de groupes de Lie, Ann. of Math.58 (1953), 443–457. Zbl0053.13002MR57263
- [13] F. Campana, Orbifoldes à première classe de Chern nulle, in The Fano Conference, Univ. Torino, Turin, 2004, 339–351. Zbl1068.53051
- [14] F. Campana & T. Peternell, Cycle spaces, in Several complex variables, VII, Encyclopaedia Math. Sci. 74, Springer, 1994, 319–349. Zbl0811.32020
- [15] S. Cantat, Sur la dynamique du groupe d’automorphismes des surfaces , Transform. Groups6 (2001), 201–214. Zbl1081.14513
- [16] S. Cantat, Version kählérienne d’une conjecture de Robert J. Zimmer, Ann. Sci. École Norm. Sup.37 (2004), 759–768. Zbl1072.22006
- [17] S. Cantat, Caractérisation des exemples de Lattès et de Kummer, Compos. Math.144 (2008), 1235–1270. Zbl1156.37012
- [18] S. Cantat, Sur les groupes de transformations birationnelles des surfaces, Ann. of Math.174 (2011), 299–340. Zbl1233.14011
- [19] S. Cantat & A. Zeghib, Holomorphic actions of higer rank lattices in dimension three, preprint, 2009.
- [20] S. Cantat & A. Zeghib, Holomorphic actions, Kummer examples, and Zimmer program, preprint, 2010. Zbl1280.22015
- [21] J.-P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. France (N.S.) 19 (1985). Zbl0579.32012
- [22] J.-P. Demailly, Regularization of closed positive currents and intersection theory, J. Algebraic Geom.1 (1992), 361–409. Zbl0777.32016
- [23] J.-P. Demailly & M. Păun, Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math.159 (2004), 1247–1274. Zbl1064.32019
- [24] T.-C. Dinh & V.-A. Nguyên, Comparison of dynamical degrees for semi-conjugate meromorphic maps, Comment. Math. Helv.86 (2011), 817–840. Zbl1279.32018MR2851870
- [25] T.-C. Dinh & N. Sibony, Groupes commutatifs d’automorphismes d’une variété kählérienne compacte, Duke Math. J.123 (2004), 311–328. Zbl1065.32012MR2066940
- [26] I. V. Dolgachev & D.-Q. Zhang, Coble rational surfaces, Amer. J. Math.123 (2001), 79–114. Zbl1056.14054MR1827278
- [27] D. Fisher, Groups acting on manifolds: around the Zimmer program, in Geometry, rigidity, and group actions, Chicago Lectures in Math., Univ. Chicago Press, 2011, 72–157. Zbl1264.22012MR2807830
- [28] A. Fujiki, On automorphism groups of compact Kähler manifolds, Invent. Math.44 (1978), 225–258. Zbl0367.32004MR481142
- [29] W. Fulton, Introduction to toric varieties, Annals of Math. Studies 131, Princeton Univ. Press, 1993. Zbl0813.14039MR1234037
- [30] W. Fulton & J. Harris, Representation theory, Graduate Texts in Math. 129, Springer, 1991. Zbl0744.22001MR1153249
- [31] É. Ghys, Actions de réseaux sur le cercle, Invent. Math.137 (1999), 199–231. Zbl0995.57006MR1703323
- [32] B. Gilligan & A. T. Huckleberry, Complex homogeneous manifolds with two ends, Michigan Math. J.28 (1981), 183–198. Zbl0452.32022MR616269
- [33] V. V. Gorbatsevich, O. V. Shvartsman & È. B. Vinberg (éds.), Discrete subgroups of Lie groups, in Lie groups and Lie algebras. II, Encyclopaedia of Math. Sciences 21, Springer, 2000. Zbl0931.22007MR1756406
- [34] H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann.146 (1962), 331–368. Zbl0173.33004MR137127
- [35] P. Griffiths & J. Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons Inc., 1994. Zbl0836.14001MR1288523
- [36] M. Gromov, On the entropy of holomorphic maps, Enseign. Math.49 (2003), 217–235. Zbl1080.37051MR2026895
- [37] E. Guentner, N. Higson & S. Weinberger, The Novikov conjecture for linear groups, Publ. Math. IHÉS101 (2005), 243–268. Zbl1073.19003MR2217050
- [38] P. de la Harpe & A. Valette, La propriété de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque 175 (1989). Zbl0759.22001
- [39] R. Hartshorne, Ample subvarieties of algebraic varieties, Notes written in collaboration with C. Musili. Lecture Notes in Math. 156, Springer, 1970. Zbl0208.48901MR282977
- [40] A. T. Huckleberry & D. M. Snow, Almost-homogeneous Kähler manifolds with hypersurface orbits, Osaka J. Math.19 (1982), 763–786. Zbl0507.32023MR687772
- [41] S. Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan 15, Princeton Univ. Press, 1987. Zbl0708.53002MR909698
- [42] K. Kodaira & D. C. Spencer, A theorem of completeness of characteristic systems of complete continuous systems, Amer. J. Math.81 (1959), 477–500. Zbl0097.36501MR112156
- [43] A. G. Kušnirenko, An analytic action of a semisimple Lie group in a neighborhood of a fixed point is equivalent to a linear one, Funkcional. Anal. i Priložen1 (1967), 103–104. Zbl0156.42205MR210833
- [44] S. Lang, Algebra, second éd., Addison-Wesley Publishing Company Advanced Book Program, 1984. Zbl0712.00001MR783636
- [45] R. Lazarsfeld, Positivity in algebraic geometry. I and II, Ergebn. Math. Grenzg. 48/49, Springer, 2004. Zbl1093.14500MR2095471
- [46] D. I. Lieberman, Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds, in Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977), Lecture Notes in Math. 670, Springer, 1978, 140–186. Zbl0391.32018MR521918
- [47] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebn. Math. Grenzg. (3) 17, Springer, 1991. Zbl0732.22008MR1090825
- [48] G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Math. Studies 78, Princeton Univ. Press, 1973. Zbl0265.53039MR385004
- [49] M. Nakamaye, Base loci of linear series are numerically determined, Trans. Amer. Math. Soc. 355 (2003), 551–566 (electronic). Zbl1017.14017MR1932713
- [50] A. L. Onishchik & È. B. Vinberg (éds.), Lie groups and Lie algebras, III, Encyclopaedia of Math. Sciences 41, Springer, 1994. Zbl0797.22001MR1349140
- [51] G. Prasad & M. S. Raghunathan, Cartan subgroups and lattices in semi-simple groups, Ann. of Math.96 (1972), 296–317. Zbl0245.22013MR302822
- [52] W. M. Ruppert, Two-dimensional complex tori with multiplication by , Arch. Math. (Basel) 72 (1999), 278–281. Zbl0964.14038MR1678033
- [53] I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A.42 (1956), 359–363. Zbl0074.18103
- [54] A. Shimizu, On complex tori with many endomorphisms, Tsukuba J. Math.8 (1984), 297–318. Zbl0581.14032
- [55] J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, in Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, 525–563. Zbl0373.14007
- [56] D. Sullivan, Infinitesimal computations in topology, Publ. Math. I.H.É.S. 47 (1977), 269–331 (1978). Zbl0374.57002
- [57] È. B. Vinberg & V. G. Kac, Quasi-homogeneous cones, Mat. Zametki1 (1967), 347–354. Zbl0163.16902
- [58] C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés 10, Soc. Math. France, 2002. Zbl1032.14001
- [59] Z. Z. Wang & D. Zaffran, A remark on the hard Lefschetz theorem for Kähler orbifolds, Proc. Amer. Math. Soc.137 (2009), 2497–2501. Zbl1169.14015
- [60] J. A. Wolf, Spaces of constant curvature, fifth éd., Publish or Perish Inc., 1984. Zbl0281.53034
- [61] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), 339–411. Zbl0369.53059
- [62] D.-Q. Zhang, A theorem of Tits type for compact Kähler manifolds, Invent. Math.176 (2009), 449–459. Zbl1170.14029
- [63] R. J. Zimmer, Kazhdan groups acting on compact manifolds, Invent. Math.75 (1984), 425–436. Zbl0576.22014MR735334
- [64] R. J. Zimmer, Actions of semisimple groups and discrete subgroups, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., 1987, 1247–1258. Zbl0671.57028MR934329
- [65] R. J. Zimmer, Lattices in semisimple groups and invariant geometric structures on compact manifolds, in Discrete groups in geometry and analysis (New Haven, Conn., 1984), Progr. Math. 67, Birkhäuser, 1987, 152–210. Zbl0663.22008MR900826
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.