Geometric structures on the complement of a projective arrangement

Wim Couwenberg; Gert Heckman; Eduard Looijenga

Publications Mathématiques de l'IHÉS (2005)

  • Volume: 101, page 69-161
  • ISSN: 0073-8301

Abstract

top
Consider a complex projective space with its Fubini-Study metric. We study certain one parameter deformations of this metric on the complement of an arrangement (= finite union of hyperplanes) whose Levi-Civita connection is of Dunkl type. Interesting examples are obtained from the arrangements defined by finite complex reflection groups. We determine a parameter interval for which the metric is locally of Fubini-Study type, flat, or complex-hyperbolic. We find a finite subset of this interval for which we get a complete orbifold or at least a Zariski open subset thereof, and we analyze these cases in some detail (e.g., we determine their orbifold fundamental group). In this set-up, the principal results of Deligne-Mostow on the Lauricella hypergeometric differential equation and work of Barthel-Hirzebruch-Höfer on arrangements in a projective plane appear as special cases. Along the way we produce in a geometric manner all the pairs of complex reflection groups with isomorphic discriminants, thus providing a uniform approach to work of Orlik-Solomon.

How to cite

top

Couwenberg, Wim, Heckman, Gert, and Looijenga, Eduard. "Geometric structures on the complement of a projective arrangement." Publications Mathématiques de l'IHÉS 101 (2005): 69-161. <http://eudml.org/doc/104212>.

@article{Couwenberg2005,
abstract = {Consider a complex projective space with its Fubini-Study metric. We study certain one parameter deformations of this metric on the complement of an arrangement (= finite union of hyperplanes) whose Levi-Civita connection is of Dunkl type. Interesting examples are obtained from the arrangements defined by finite complex reflection groups. We determine a parameter interval for which the metric is locally of Fubini-Study type, flat, or complex-hyperbolic. We find a finite subset of this interval for which we get a complete orbifold or at least a Zariski open subset thereof, and we analyze these cases in some detail (e.g., we determine their orbifold fundamental group). In this set-up, the principal results of Deligne-Mostow on the Lauricella hypergeometric differential equation and work of Barthel-Hirzebruch-Höfer on arrangements in a projective plane appear as special cases. Along the way we produce in a geometric manner all the pairs of complex reflection groups with isomorphic discriminants, thus providing a uniform approach to work of Orlik-Solomon.},
author = {Couwenberg, Wim, Heckman, Gert, Looijenga, Eduard},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {hypergeometric; ball-quotient; complex hyperbolic geometry; arrangement; reflection group},
language = {eng},
pages = {69-161},
publisher = {Springer},
title = {Geometric structures on the complement of a projective arrangement},
url = {http://eudml.org/doc/104212},
volume = {101},
year = {2005},
}

TY - JOUR
AU - Couwenberg, Wim
AU - Heckman, Gert
AU - Looijenga, Eduard
TI - Geometric structures on the complement of a projective arrangement
JO - Publications Mathématiques de l'IHÉS
PY - 2005
PB - Springer
VL - 101
SP - 69
EP - 161
AB - Consider a complex projective space with its Fubini-Study metric. We study certain one parameter deformations of this metric on the complement of an arrangement (= finite union of hyperplanes) whose Levi-Civita connection is of Dunkl type. Interesting examples are obtained from the arrangements defined by finite complex reflection groups. We determine a parameter interval for which the metric is locally of Fubini-Study type, flat, or complex-hyperbolic. We find a finite subset of this interval for which we get a complete orbifold or at least a Zariski open subset thereof, and we analyze these cases in some detail (e.g., we determine their orbifold fundamental group). In this set-up, the principal results of Deligne-Mostow on the Lauricella hypergeometric differential equation and work of Barthel-Hirzebruch-Höfer on arrangements in a projective plane appear as special cases. Along the way we produce in a geometric manner all the pairs of complex reflection groups with isomorphic discriminants, thus providing a uniform approach to work of Orlik-Solomon.
LA - eng
KW - hypergeometric; ball-quotient; complex hyperbolic geometry; arrangement; reflection group
UR - http://eudml.org/doc/104212
ER -

References

top
  1. 1. G. Barthel, F. Hirzebruch, T. Höfer, Geradenkonfigurationen und algebraische Flächen, Aspects of Mathematics, Vieweg, Braunschweig–Wiesbaden 1987. Zbl0645.14016MR912097
  2. 2. D. Bessis, Zariski theorems and diagrams for braid groups, Invent. Math., 145 (2001), 487–507, also available at arXiv math.GR/0010323. Zbl1034.20033MR1856398
  3. 3. N. Bourbaki, Groupes et algèbres de Lie, Ch. 4, 5 et 6 Actualités Scientifiques et industrielles, vol. 1337, Hermann, Paris 1968. Zbl0483.22001MR240238
  4. 4. E. Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer komplexen Spiegelungsgruppe, Invent. Math., 12 (1971), 57–61. Zbl0204.56502MR293615
  5. 5. W. Casselman, Families of curves and automorphic forms, Thesis, Princeton University, 1966 (unpublished). 
  6. 6. A. M. Cohen, Finite complex reflection groups, Ann. Sci. Éc. Norm. Super., 9 (1976), 379–446. Zbl0359.20029MR422448
  7. 7. P. B. Cohen, F. Hirzebruch, Review of Commensurabilities among lattices in PU(1,n) by Deligne and Mostow, Bull. Am. Math. Soc., 32 (1995), 88–105. MR1568148
  8. 8. P. B. Cohen, G. Wüstholz, Applications of the André-Oort Conjecture to some questions in transcendency, in: A Panorama in Number Theory, a view from Baker’s garden, Cambridge University Press, London New York 2002, 89–106. Zbl1051.11039
  9. 9. W. Couwenberg, Complex Reflection Groups and Hypergeometric Functions, Thesis (123 p.), University of Nijmegen, 1994, also available at http://members.chello.nl/ w.couwenberg/. 
  10. 10. H. S. M. Coxeter, Regular complex polytopes, Cambridge University Press, London New York 1974. Zbl0296.50009MR370328
  11. 11. C. W. Curtis, N. Iwahori, R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with (B,N)-pairs, Publ. Math., Inst. Hautes Étud. Sci., 40 (1971), 81–116. Zbl0254.20004MR347996
  12. 12. P. Deligne, Équations Différentielles à Points Singuliers Réguliers, Lect. Notes Math., vol. 163, Springer, Berlin etc. 1970. Zbl0244.14004MR417174
  13. 13. P. Deligne, Les immeubles de groupes de tresses généralisées, Invent. Math., 17 (1972), 273–302. Zbl0238.20034MR422673
  14. 14. P. Deligne, G. D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math., Inst. Hautes Étud. Sci., 63 (1986), 5–89. Zbl0615.22008MR849651
  15. 15. P. Deligne, G. D. Mostow, Commensurabilities among lattices in PU(1,n), Ann. of Math. Studies, vol. 132, Princeton University Press, Princeton 1993. Zbl0826.22011MR1241644
  16. 16. B. R. Doran, Intersection Homology, Hypergeometric Functions, and Moduli Spaces as Ball Quotients, Thesis, Princeton University (93 p.), 2003. 
  17. 17. H. Grauert, R. Remmert, Coherent analytic sheaves, Grundlehren der Mathematischen Wissenschaften, vol. 265, Springer, Berlin, 1984. Zbl0537.32001MR755331
  18. 18. B. Hunt, The Geometry of some special Arithmetic Quotients, Springer Lect. Notes Math., vol. 1637, 1996. Zbl0904.14025MR1438547
  19. 19. B. Hunt, S. Weintraub, Janus-like algebraic varieties, J. Differ. Geom., 39 (1994), 507–557. Zbl0830.14022MR1274130
  20. 20. R.-P. Holzapfel, Chern Numbers of Algebraic Surfaces, Hirzebruch’s Examples are Picard Modular Surfaces, Math. Nachr., 126 (1986), 255–273. Zbl0625.14018
  21. 21. R.-P. Holzapfel, Transcendental Ball Points of Algebraic Picard Integrals, Math. Nachr., 161 (1993), 7–25. Zbl0823.14034MR1251006
  22. 22. E. Looijenga, Arrangements, KZ systems and Lie algebra homology, in: Singularity Theory, B. Bruce and D. Mond, eds., London Math. Soc. Lecture Note Series 263, Cambridge University Press, London New York 1999, 109–130. Zbl0953.17011MR1709348
  23. 23. E. Looijenga, Compactifications defined by arrangements I: the ball quotient case, Duke Math. J., 118 (2003), 151–187, also available at arXiv math.AG/0106228. Zbl1052.14036MR1978885
  24. 24. B. Malgrange, Sur les points singuliers des équations differentielles, Enseign. Math., 20 (1974), 147–176. Zbl0299.34011MR368074
  25. 25. J. I. Manin, Moduli fuchsiani, Ann. Sc. Norm. Super. Pisa, 19 (1965), 113–126. Zbl0166.04301MR180581
  26. 26. G. D. Mostow, Generalized Picard lattices arising from half-integral conditions, Publ. Math., Inst. Hautes Étud. Sci., 63 (1986), 91–106. Zbl0615.22009MR849652
  27. 27. P. Orlik, L. Solomon, Discriminants in the invariant theory of reflection groups, Nagoya Math. J., 109 (1988), 23–45. Zbl0614.20032MR931949
  28. 28. P. Orlik, H. Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, vol. 300, Springer, Berlin, 1992. Zbl0757.55001MR1217488
  29. 29. H. A. Schwarz, Über diejenigen Fälle in welchen die Gaussische hypergeometrische Reihe eine algebraische Funktion ihres vierten Elementes darstellt, J. Reine Angew. Math., 75 (1873), 292–335. JFM05.0146.03
  30. 30. G. C. Shephard, J. A. Todd, Finite unitary reflection groups, Can. J. Math., 6 (1954), 274–304. Zbl0055.14305MR59914
  31. 31. G. Shimura, On purely transcendental fields of automorphic functions of several variables, Osaka J. Math., 1 (1964), 1–14. Zbl0149.04302MR176113
  32. 32. L. Solomon, Invariants of finite reflection groups, Nagoya Math. J., 22 (1963), 57–64. Zbl0117.27104MR154929
  33. 33. W. P. Thurston, Three-Dimensional Geometry and Topology, vol. I, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton 1997. Zbl0873.57001MR1435975
  34. 34. W. P. Thurston, Shapes of polyhedra and triangulations of the sphere, Geom. Topol. Monogr., 1 (1998), 511–549. Zbl0931.57010MR1668340
  35. 35. M. Yoshida, Orbifold-uniformizing differential equations. III. Arrangements defined by 3-dimensional primitive unitary reflection groups, Math. Ann., 274 (1986), 319–334. Zbl0579.58025MR838472

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.