Geometric structures on the complement of a projective arrangement
Wim Couwenberg; Gert Heckman; Eduard Looijenga
Publications Mathématiques de l'IHÉS (2005)
- Volume: 101, page 69-161
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topCouwenberg, Wim, Heckman, Gert, and Looijenga, Eduard. "Geometric structures on the complement of a projective arrangement." Publications Mathématiques de l'IHÉS 101 (2005): 69-161. <http://eudml.org/doc/104212>.
@article{Couwenberg2005,
abstract = {Consider a complex projective space with its Fubini-Study metric. We study certain one parameter deformations of this metric on the complement of an arrangement (= finite union of hyperplanes) whose Levi-Civita connection is of Dunkl type. Interesting examples are obtained from the arrangements defined by finite complex reflection groups. We determine a parameter interval for which the metric is locally of Fubini-Study type, flat, or complex-hyperbolic. We find a finite subset of this interval for which we get a complete orbifold or at least a Zariski open subset thereof, and we analyze these cases in some detail (e.g., we determine their orbifold fundamental group). In this set-up, the principal results of Deligne-Mostow on the Lauricella hypergeometric differential equation and work of Barthel-Hirzebruch-Höfer on arrangements in a projective plane appear as special cases. Along the way we produce in a geometric manner all the pairs of complex reflection groups with isomorphic discriminants, thus providing a uniform approach to work of Orlik-Solomon.},
author = {Couwenberg, Wim, Heckman, Gert, Looijenga, Eduard},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {hypergeometric; ball-quotient; complex hyperbolic geometry; arrangement; reflection group},
language = {eng},
pages = {69-161},
publisher = {Springer},
title = {Geometric structures on the complement of a projective arrangement},
url = {http://eudml.org/doc/104212},
volume = {101},
year = {2005},
}
TY - JOUR
AU - Couwenberg, Wim
AU - Heckman, Gert
AU - Looijenga, Eduard
TI - Geometric structures on the complement of a projective arrangement
JO - Publications Mathématiques de l'IHÉS
PY - 2005
PB - Springer
VL - 101
SP - 69
EP - 161
AB - Consider a complex projective space with its Fubini-Study metric. We study certain one parameter deformations of this metric on the complement of an arrangement (= finite union of hyperplanes) whose Levi-Civita connection is of Dunkl type. Interesting examples are obtained from the arrangements defined by finite complex reflection groups. We determine a parameter interval for which the metric is locally of Fubini-Study type, flat, or complex-hyperbolic. We find a finite subset of this interval for which we get a complete orbifold or at least a Zariski open subset thereof, and we analyze these cases in some detail (e.g., we determine their orbifold fundamental group). In this set-up, the principal results of Deligne-Mostow on the Lauricella hypergeometric differential equation and work of Barthel-Hirzebruch-Höfer on arrangements in a projective plane appear as special cases. Along the way we produce in a geometric manner all the pairs of complex reflection groups with isomorphic discriminants, thus providing a uniform approach to work of Orlik-Solomon.
LA - eng
KW - hypergeometric; ball-quotient; complex hyperbolic geometry; arrangement; reflection group
UR - http://eudml.org/doc/104212
ER -
References
top- 1. G. Barthel, F. Hirzebruch, T. Höfer, Geradenkonfigurationen und algebraische Flächen, Aspects of Mathematics, Vieweg, Braunschweig–Wiesbaden 1987. Zbl0645.14016MR912097
- 2. D. Bessis, Zariski theorems and diagrams for braid groups, Invent. Math., 145 (2001), 487–507, also available at arXiv math.GR/0010323. Zbl1034.20033MR1856398
- 3. N. Bourbaki, Groupes et algèbres de Lie, Ch. 4, 5 et 6 Actualités Scientifiques et industrielles, vol. 1337, Hermann, Paris 1968. Zbl0483.22001MR240238
- 4. E. Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer komplexen Spiegelungsgruppe, Invent. Math., 12 (1971), 57–61. Zbl0204.56502MR293615
- 5. W. Casselman, Families of curves and automorphic forms, Thesis, Princeton University, 1966 (unpublished).
- 6. A. M. Cohen, Finite complex reflection groups, Ann. Sci. Éc. Norm. Super., 9 (1976), 379–446. Zbl0359.20029MR422448
- 7. P. B. Cohen, F. Hirzebruch, Review of Commensurabilities among lattices in PU(1,n) by Deligne and Mostow, Bull. Am. Math. Soc., 32 (1995), 88–105. MR1568148
- 8. P. B. Cohen, G. Wüstholz, Applications of the André-Oort Conjecture to some questions in transcendency, in: A Panorama in Number Theory, a view from Baker’s garden, Cambridge University Press, London New York 2002, 89–106. Zbl1051.11039
- 9. W. Couwenberg, Complex Reflection Groups and Hypergeometric Functions, Thesis (123 p.), University of Nijmegen, 1994, also available at http://members.chello.nl/ w.couwenberg/.
- 10. H. S. M. Coxeter, Regular complex polytopes, Cambridge University Press, London New York 1974. Zbl0296.50009MR370328
- 11. C. W. Curtis, N. Iwahori, R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with (B,N)-pairs, Publ. Math., Inst. Hautes Étud. Sci., 40 (1971), 81–116. Zbl0254.20004MR347996
- 12. P. Deligne, Équations Différentielles à Points Singuliers Réguliers, Lect. Notes Math., vol. 163, Springer, Berlin etc. 1970. Zbl0244.14004MR417174
- 13. P. Deligne, Les immeubles de groupes de tresses généralisées, Invent. Math., 17 (1972), 273–302. Zbl0238.20034MR422673
- 14. P. Deligne, G. D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. Math., Inst. Hautes Étud. Sci., 63 (1986), 5–89. Zbl0615.22008MR849651
- 15. P. Deligne, G. D. Mostow, Commensurabilities among lattices in PU(1,n), Ann. of Math. Studies, vol. 132, Princeton University Press, Princeton 1993. Zbl0826.22011MR1241644
- 16. B. R. Doran, Intersection Homology, Hypergeometric Functions, and Moduli Spaces as Ball Quotients, Thesis, Princeton University (93 p.), 2003.
- 17. H. Grauert, R. Remmert, Coherent analytic sheaves, Grundlehren der Mathematischen Wissenschaften, vol. 265, Springer, Berlin, 1984. Zbl0537.32001MR755331
- 18. B. Hunt, The Geometry of some special Arithmetic Quotients, Springer Lect. Notes Math., vol. 1637, 1996. Zbl0904.14025MR1438547
- 19. B. Hunt, S. Weintraub, Janus-like algebraic varieties, J. Differ. Geom., 39 (1994), 507–557. Zbl0830.14022MR1274130
- 20. R.-P. Holzapfel, Chern Numbers of Algebraic Surfaces, Hirzebruch’s Examples are Picard Modular Surfaces, Math. Nachr., 126 (1986), 255–273. Zbl0625.14018
- 21. R.-P. Holzapfel, Transcendental Ball Points of Algebraic Picard Integrals, Math. Nachr., 161 (1993), 7–25. Zbl0823.14034MR1251006
- 22. E. Looijenga, Arrangements, KZ systems and Lie algebra homology, in: Singularity Theory, B. Bruce and D. Mond, eds., London Math. Soc. Lecture Note Series 263, Cambridge University Press, London New York 1999, 109–130. Zbl0953.17011MR1709348
- 23. E. Looijenga, Compactifications defined by arrangements I: the ball quotient case, Duke Math. J., 118 (2003), 151–187, also available at arXiv math.AG/0106228. Zbl1052.14036MR1978885
- 24. B. Malgrange, Sur les points singuliers des équations differentielles, Enseign. Math., 20 (1974), 147–176. Zbl0299.34011MR368074
- 25. J. I. Manin, Moduli fuchsiani, Ann. Sc. Norm. Super. Pisa, 19 (1965), 113–126. Zbl0166.04301MR180581
- 26. G. D. Mostow, Generalized Picard lattices arising from half-integral conditions, Publ. Math., Inst. Hautes Étud. Sci., 63 (1986), 91–106. Zbl0615.22009MR849652
- 27. P. Orlik, L. Solomon, Discriminants in the invariant theory of reflection groups, Nagoya Math. J., 109 (1988), 23–45. Zbl0614.20032MR931949
- 28. P. Orlik, H. Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, vol. 300, Springer, Berlin, 1992. Zbl0757.55001MR1217488
- 29. H. A. Schwarz, Über diejenigen Fälle in welchen die Gaussische hypergeometrische Reihe eine algebraische Funktion ihres vierten Elementes darstellt, J. Reine Angew. Math., 75 (1873), 292–335. JFM05.0146.03
- 30. G. C. Shephard, J. A. Todd, Finite unitary reflection groups, Can. J. Math., 6 (1954), 274–304. Zbl0055.14305MR59914
- 31. G. Shimura, On purely transcendental fields of automorphic functions of several variables, Osaka J. Math., 1 (1964), 1–14. Zbl0149.04302MR176113
- 32. L. Solomon, Invariants of finite reflection groups, Nagoya Math. J., 22 (1963), 57–64. Zbl0117.27104MR154929
- 33. W. P. Thurston, Three-Dimensional Geometry and Topology, vol. I, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton 1997. Zbl0873.57001MR1435975
- 34. W. P. Thurston, Shapes of polyhedra and triangulations of the sphere, Geom. Topol. Monogr., 1 (1998), 511–549. Zbl0931.57010MR1668340
- 35. M. Yoshida, Orbifold-uniformizing differential equations. III. Arrangements defined by 3-dimensional primitive unitary reflection groups, Math. Ann., 274 (1986), 319–334. Zbl0579.58025MR838472
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.