Nonabelian Hodge theory in characteristic p

A. Ogus; V. Vologodsky

Publications Mathématiques de l'IHÉS (2007)

  • Volume: 106, page 1-138
  • ISSN: 0073-8301

Abstract

top
Given a scheme in characteristic p together with a lifting modulo p2, we construct a functor from a category of suitably nilpotent modules with connection to the category of Higgs modules. We use this functor to generalize the decomposition theorem of Deligne-Illusie to the case of de Rham cohomology with coefficients.

How to cite

top

Ogus, A., and Vologodsky, V.. "Nonabelian Hodge theory in characteristic $p$." Publications Mathématiques de l'IHÉS 106 (2007): 1-138. <http://eudml.org/doc/104228>.

@article{Ogus2007,
abstract = {Given a scheme in characteristic p together with a lifting modulo p2, we construct a functor from a category of suitably nilpotent modules with connection to the category of Higgs modules. We use this functor to generalize the decomposition theorem of Deligne-Illusie to the case of de Rham cohomology with coefficients.},
author = {Ogus, A., Vologodsky, V.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Hodge theory; non-Abelian theory; Higgs bundles; Higgs field; de Rham cohomology; Higgs cohomology; Riemann-Hilbert correspondence; Azumaya algebras},
language = {eng},
pages = {1-138},
publisher = {Springer},
title = {Nonabelian Hodge theory in characteristic $p$},
url = {http://eudml.org/doc/104228},
volume = {106},
year = {2007},
}

TY - JOUR
AU - Ogus, A.
AU - Vologodsky, V.
TI - Nonabelian Hodge theory in characteristic $p$
JO - Publications Mathématiques de l'IHÉS
PY - 2007
PB - Springer
VL - 106
SP - 1
EP - 138
AB - Given a scheme in characteristic p together with a lifting modulo p2, we construct a functor from a category of suitably nilpotent modules with connection to the category of Higgs modules. We use this functor to generalize the decomposition theorem of Deligne-Illusie to the case of de Rham cohomology with coefficients.
LA - eng
KW - Hodge theory; non-Abelian theory; Higgs bundles; Higgs field; de Rham cohomology; Higgs cohomology; Riemann-Hilbert correspondence; Azumaya algebras
UR - http://eudml.org/doc/104228
ER -

References

top
  1. 1. A. Beilinson, On the derived category of perverse sheaves, in K-Theory, Arithmetic and Geometry (Moscow, 1984–1986), Lect. Notes Math., vol. 1289, Springer, Berlin Heidelberg New York, 1987. Zbl0652.14008MR923133
  2. 2. A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque, 100 (1982), 5-171 Zbl0536.14011MR751966
  3. 3. P. Berthelot, A. Ogus, Notes on Crystalline Cohomology, Princeton University Press, Princeton, N.J. (1978) Zbl0383.14010MR491705
  4. 4. R. Bezrukavnikov, I. Mirković, and D. Rumynin, Localization of modules for a semisimple lie algebra in prime characteristic, Ann. Math., to appear, arXiv:math RT/0205144v5. Zbl1220.17009
  5. 5. A. Braverman, R. Bezrukavnikov, Geometric Langlands correspondence for 𝒟 -modules in prime characteristic: the Gl(n) case, Pure Appl. Math. Q., 3 (2007), 153-179 Zbl1206.14030MR2330157
  6. 6. P. Deligne, Equations Différentielles à Points Singuliers Réguliers, Springer, Berlin Heidelberg New York (1970) Zbl0244.14004MR417174
  7. 7. P. Deligne, Théorie de Hodge II, Publ. Math., Inst. Hautes Étud. Sci., 40 (1972), 5-57 Zbl0219.14007MR498551
  8. 8. P. Deligne, L. Illusie, Relèvements modulo p2 et décomposition du complexe de de Rham, Invent. Math., 89 (1987), 247-270 Zbl0632.14017MR894379
  9. 9. P. Deligne and J. Milne, Tannakian categories, in Hodge Cycles, Motives, and Shimura Varieties, Lect. Notes Math., vol. 900, Springer, Berlin Heidelberg New York, 1982. Zbl0477.14004MR654325
  10. 10. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer, New York (1999) Zbl0819.13001MR1322960
  11. 11. G. Faltings, Crystalline cohomology and p-adic Galois representations, in J.-I. Igusa, ed., Algebraic Analysis, Geometry, and Number Theory, pp. 25–80, The Johns Hopkins University Press, Baltimore London, 1989. Zbl0805.14008MR1463696
  12. 12. G. Faltings, Crystalline cohomology of semistable curve – the Qp-theory, J. Algebr. Geom., 6 (1997), 1-18 Zbl0883.14007MR1486990
  13. 13. A. Grothendieck, J. Dieudonné, Elements de géométrie algébrique: étude locale des schémas et des morphismes des schémas, Publ. Math., Inst. Hautes Étud. Sci., 24 (1964), 5-231 Zbl0135.39701
  14. 14. A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique, Grundlehren der mathematischen Wissenschaften, vol. 166, Springer, 1971. Zbl0203.23301
  15. 15. L. Illusie, Complexe Cotangent et Déformations I, Springer, Berlin Heidelberg New York (1971) Zbl0224.13014MR491680
  16. 16. K. Joshi, C.S. Rajan, Frobenius splitting and ordinarity, Int. Math. Res. Not., 2 (2003), 109-121 Zbl1074.14019MR1936581
  17. 17. K. Kato, Logarithmic structures of Fontaine-Illusie, in J.-I. Igusa, ed., Algebraic Analysis, Geometry, and Number Theory, Johns Hopkins University Press, Baltimore London, 1989. Zbl0776.14004MR1463703
  18. 18. N. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Publ. Math., Inst. Hautes Étud. Sci., 39 (1970), 175-232 Zbl0221.14007MR291177
  19. 19. N. Katz, Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., 18 (1972), 1-118 Zbl0278.14004MR337959
  20. 20. G. Laumon, Sur la catégorie dérivée des D-modules filtrées, in Algebraic Geometry (Tokyo-Kyoto), pp. 151–237, Springer, Berlin Heidelberg New York, 1983. Zbl0551.14006MR726427
  21. 21. B. Mazur, Frobenius and the Hodge filtration, Bull. Amer. Math. Soc., 78 (1972), 653-667 Zbl0258.14006MR330169
  22. 22. B. Mazur, W. Messing, Universal Extensions and One Dimensional Crystalline Cohomology, Springer, Berlin Heidelberg New York (1974) Zbl0301.14016MR374150
  23. 23. J. Milne, Étale Cohomology, Princeton University Press, Princeton, N.J. (1980) Zbl0433.14012MR559531
  24. 24. A. Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc., 9 (1996), 205-236 Zbl0864.14008
  25. 25. A. Neeman, Triangulated Categories, Princeton University Press, Princeton, N.J. (2001) Zbl0974.18008MR1812507
  26. 26. A. Ogus, F-crystals and Griffiths transversality. in Proceedings of the International Symposium on Algebraic Geometry, Kyoto 1977, pp. 15–44, Kinokuniya Book-Store, Co., Tokyo, 1977. Zbl0427.14007MR578852
  27. 27. A. Ogus, Griffiths transversality in crystalline cohomology, Ann. Math., 108 (1978), 395-419 Zbl0362.14007MR506993
  28. 28. A. Ogus, F-Crystals, Griffiths Transversality, and the Hodge Decomposition, Astérisque, vol. 221, Soc. Math. France, 1994. Zbl0801.14004MR1280543
  29. 29. A. Ogus, Higgs cohomology, p-curvature, and the Cartier isomorphism, Compos. Math., 140 (2004), 145-164 Zbl1055.14021MR2004127
  30. 30. B. Osserman, Mochizuki’s crys-stable bundles: a lexicon and applications, RIMS Kokyuroku, 43 (2007), 95–119 Zbl1141.14017
  31. 31. M. Raynaud, “p-torsion” du schéma de Picard, Astérisque, 64 (1978), 87-149 Zbl0434.14024
  32. 32. N. S. Rivano, Catégories Tannakiennes, Lect. Notes Math., vol. 265, Springer, 1972. MR338002
  33. 33. N. Roby, Lois polynômes et lois formelles en théorie des modules, Ann. Éc. Norm. Super., III. Sér., 80 (1963), 213-348 Zbl0117.02302MR161887
  34. 34. C. Sabbah, On a twisted de Rham complex, Tohoku Math. J., 51 (1999), 125-140 Zbl0947.14007MR1671743
  35. 35. M. Saito, Hodge structure via filtered D-modules, Astérisque, 130 (1985), 342-351 Zbl0621.14008MR804062
  36. 36. C. Simpson, Higgs bundles and local systems, Publ. Math., Inst. Hautes Étud. Sci., 75 (1992), 5-95 Zbl0814.32003MR1179076
  37. 37. V. Srinivas, Decomposition of the de Rham complex, Proc. Indian Acad. Sci., Math. Sci., 100 (1990), 103-106 Zbl0728.14023MR1069697
  38. 38. V. Voevodsky, Homotopy theory of simplicial sheaves in completely decomposable topologies, http://www.math.uiuc.edu/K-theory/443, 2000. Zbl1194.55020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.