Nonabelian Hodge theory in characteristic
Publications Mathématiques de l'IHÉS (2007)
- Volume: 106, page 1-138
- ISSN: 0073-8301
Access Full Article
topAbstract
topHow to cite
topOgus, A., and Vologodsky, V.. "Nonabelian Hodge theory in characteristic $p$." Publications Mathématiques de l'IHÉS 106 (2007): 1-138. <http://eudml.org/doc/104228>.
@article{Ogus2007,
abstract = {Given a scheme in characteristic p together with a lifting modulo p2, we construct a functor from a category of suitably nilpotent modules with connection to the category of Higgs modules. We use this functor to generalize the decomposition theorem of Deligne-Illusie to the case of de Rham cohomology with coefficients.},
author = {Ogus, A., Vologodsky, V.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {Hodge theory; non-Abelian theory; Higgs bundles; Higgs field; de Rham cohomology; Higgs cohomology; Riemann-Hilbert correspondence; Azumaya algebras},
language = {eng},
pages = {1-138},
publisher = {Springer},
title = {Nonabelian Hodge theory in characteristic $p$},
url = {http://eudml.org/doc/104228},
volume = {106},
year = {2007},
}
TY - JOUR
AU - Ogus, A.
AU - Vologodsky, V.
TI - Nonabelian Hodge theory in characteristic $p$
JO - Publications Mathématiques de l'IHÉS
PY - 2007
PB - Springer
VL - 106
SP - 1
EP - 138
AB - Given a scheme in characteristic p together with a lifting modulo p2, we construct a functor from a category of suitably nilpotent modules with connection to the category of Higgs modules. We use this functor to generalize the decomposition theorem of Deligne-Illusie to the case of de Rham cohomology with coefficients.
LA - eng
KW - Hodge theory; non-Abelian theory; Higgs bundles; Higgs field; de Rham cohomology; Higgs cohomology; Riemann-Hilbert correspondence; Azumaya algebras
UR - http://eudml.org/doc/104228
ER -
References
top- 1. A. Beilinson, On the derived category of perverse sheaves, in K-Theory, Arithmetic and Geometry (Moscow, 1984–1986), Lect. Notes Math., vol. 1289, Springer, Berlin Heidelberg New York, 1987. Zbl0652.14008MR923133
- 2. A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque, 100 (1982), 5-171 Zbl0536.14011MR751966
- 3. P. Berthelot, A. Ogus, Notes on Crystalline Cohomology, Princeton University Press, Princeton, N.J. (1978) Zbl0383.14010MR491705
- 4. R. Bezrukavnikov, I. Mirković, and D. Rumynin, Localization of modules for a semisimple lie algebra in prime characteristic, Ann. Math., to appear, arXiv:math RT/0205144v5. Zbl1220.17009
- 5. A. Braverman, R. Bezrukavnikov, Geometric Langlands correspondence for -modules in prime characteristic: the Gl(n) case, Pure Appl. Math. Q., 3 (2007), 153-179 Zbl1206.14030MR2330157
- 6. P. Deligne, Equations Différentielles à Points Singuliers Réguliers, Springer, Berlin Heidelberg New York (1970) Zbl0244.14004MR417174
- 7. P. Deligne, Théorie de Hodge II, Publ. Math., Inst. Hautes Étud. Sci., 40 (1972), 5-57 Zbl0219.14007MR498551
- 8. P. Deligne, L. Illusie, Relèvements modulo p2 et décomposition du complexe de de Rham, Invent. Math., 89 (1987), 247-270 Zbl0632.14017MR894379
- 9. P. Deligne and J. Milne, Tannakian categories, in Hodge Cycles, Motives, and Shimura Varieties, Lect. Notes Math., vol. 900, Springer, Berlin Heidelberg New York, 1982. Zbl0477.14004MR654325
- 10. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer, New York (1999) Zbl0819.13001MR1322960
- 11. G. Faltings, Crystalline cohomology and p-adic Galois representations, in J.-I. Igusa, ed., Algebraic Analysis, Geometry, and Number Theory, pp. 25–80, The Johns Hopkins University Press, Baltimore London, 1989. Zbl0805.14008MR1463696
- 12. G. Faltings, Crystalline cohomology of semistable curve – the Qp-theory, J. Algebr. Geom., 6 (1997), 1-18 Zbl0883.14007MR1486990
- 13. A. Grothendieck, J. Dieudonné, Elements de géométrie algébrique: étude locale des schémas et des morphismes des schémas, Publ. Math., Inst. Hautes Étud. Sci., 24 (1964), 5-231 Zbl0135.39701
- 14. A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique, Grundlehren der mathematischen Wissenschaften, vol. 166, Springer, 1971. Zbl0203.23301
- 15. L. Illusie, Complexe Cotangent et Déformations I, Springer, Berlin Heidelberg New York (1971) Zbl0224.13014MR491680
- 16. K. Joshi, C.S. Rajan, Frobenius splitting and ordinarity, Int. Math. Res. Not., 2 (2003), 109-121 Zbl1074.14019MR1936581
- 17. K. Kato, Logarithmic structures of Fontaine-Illusie, in J.-I. Igusa, ed., Algebraic Analysis, Geometry, and Number Theory, Johns Hopkins University Press, Baltimore London, 1989. Zbl0776.14004MR1463703
- 18. N. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Publ. Math., Inst. Hautes Étud. Sci., 39 (1970), 175-232 Zbl0221.14007MR291177
- 19. N. Katz, Algebraic solutions of differential equations (p-curvature and the Hodge filtration), Invent. Math., 18 (1972), 1-118 Zbl0278.14004MR337959
- 20. G. Laumon, Sur la catégorie dérivée des D-modules filtrées, in Algebraic Geometry (Tokyo-Kyoto), pp. 151–237, Springer, Berlin Heidelberg New York, 1983. Zbl0551.14006MR726427
- 21. B. Mazur, Frobenius and the Hodge filtration, Bull. Amer. Math. Soc., 78 (1972), 653-667 Zbl0258.14006MR330169
- 22. B. Mazur, W. Messing, Universal Extensions and One Dimensional Crystalline Cohomology, Springer, Berlin Heidelberg New York (1974) Zbl0301.14016MR374150
- 23. J. Milne, Étale Cohomology, Princeton University Press, Princeton, N.J. (1980) Zbl0433.14012MR559531
- 24. A. Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc., 9 (1996), 205-236 Zbl0864.14008
- 25. A. Neeman, Triangulated Categories, Princeton University Press, Princeton, N.J. (2001) Zbl0974.18008MR1812507
- 26. A. Ogus, F-crystals and Griffiths transversality. in Proceedings of the International Symposium on Algebraic Geometry, Kyoto 1977, pp. 15–44, Kinokuniya Book-Store, Co., Tokyo, 1977. Zbl0427.14007MR578852
- 27. A. Ogus, Griffiths transversality in crystalline cohomology, Ann. Math., 108 (1978), 395-419 Zbl0362.14007MR506993
- 28. A. Ogus, F-Crystals, Griffiths Transversality, and the Hodge Decomposition, Astérisque, vol. 221, Soc. Math. France, 1994. Zbl0801.14004MR1280543
- 29. A. Ogus, Higgs cohomology, p-curvature, and the Cartier isomorphism, Compos. Math., 140 (2004), 145-164 Zbl1055.14021MR2004127
- 30. B. Osserman, Mochizuki’s crys-stable bundles: a lexicon and applications, RIMS Kokyuroku, 43 (2007), 95–119 Zbl1141.14017
- 31. M. Raynaud, “p-torsion” du schéma de Picard, Astérisque, 64 (1978), 87-149 Zbl0434.14024
- 32. N. S. Rivano, Catégories Tannakiennes, Lect. Notes Math., vol. 265, Springer, 1972. MR338002
- 33. N. Roby, Lois polynômes et lois formelles en théorie des modules, Ann. Éc. Norm. Super., III. Sér., 80 (1963), 213-348 Zbl0117.02302MR161887
- 34. C. Sabbah, On a twisted de Rham complex, Tohoku Math. J., 51 (1999), 125-140 Zbl0947.14007MR1671743
- 35. M. Saito, Hodge structure via filtered D-modules, Astérisque, 130 (1985), 342-351 Zbl0621.14008MR804062
- 36. C. Simpson, Higgs bundles and local systems, Publ. Math., Inst. Hautes Étud. Sci., 75 (1992), 5-95 Zbl0814.32003MR1179076
- 37. V. Srinivas, Decomposition of the de Rham complex, Proc. Indian Acad. Sci., Math. Sci., 100 (1990), 103-106 Zbl0728.14023MR1069697
- 38. V. Voevodsky, Homotopy theory of simplicial sheaves in completely decomposable topologies, http://www.math.uiuc.edu/K-theory/443, 2000. Zbl1194.55020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.