Surprising properties of centralisers in classical Lie algebras

Oksana Yakimova[1]

  • [1] Universität Erlangen-Nürnberg Mathematisches Institut Bismarckstrasse 1 1/2 91054 Erlangen (Germany)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 3, page 903-935
  • ISSN: 0373-0956

Abstract

top
Let 𝔤 be a classical Lie algebra, i.e., either 𝔤𝔩 n , 𝔰𝔭 n , or 𝔰𝔬 n and let e be a nilpotent element of 𝔤 . We study various properties of the centralisers 𝔤 e . The first four sections deal with rather elementary questions, like the centre of 𝔤 e , commuting varieties associated with 𝔤 e , or centralisers of commuting pairs. The second half of the paper addresses problems related to different Poisson structures on 𝔤 e * and symmetric invariants of 𝔤 e .

How to cite

top

Yakimova, Oksana. "Surprising properties of centralisers in classical Lie algebras." Annales de l’institut Fourier 59.3 (2009): 903-935. <http://eudml.org/doc/10423>.

@article{Yakimova2009,
abstract = {Let $\mathfrak\{g\}$ be a classical Lie algebra, i.e., either $\mathfrak\{gl\}_n$, $\mathfrak\{sp\}_n$, or $\mathfrak\{so\}_n$ and let $e$ be a nilpotent element of $\mathfrak\{g\}$. We study various properties of the centralisers $\mathfrak\{g\}_e$. The first four sections deal with rather elementary questions, like the centre of $\mathfrak\{g\}_e$, commuting varieties associated with $\mathfrak\{g\}_e$, or centralisers of commuting pairs. The second half of the paper addresses problems related to different Poisson structures on $\mathfrak\{g\}_e^*$ and symmetric invariants of $\mathfrak\{g\}_e$.},
affiliation = {Universität Erlangen-Nürnberg Mathematisches Institut Bismarckstrasse 1 1/2 91054 Erlangen (Germany)},
author = {Yakimova, Oksana},
journal = {Annales de l’institut Fourier},
keywords = {Nilpotent orbits; centralisers; symmetric invariants},
language = {eng},
number = {3},
pages = {903-935},
publisher = {Association des Annales de l’institut Fourier},
title = {Surprising properties of centralisers in classical Lie algebras},
url = {http://eudml.org/doc/10423},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Yakimova, Oksana
TI - Surprising properties of centralisers in classical Lie algebras
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 3
SP - 903
EP - 935
AB - Let $\mathfrak{g}$ be a classical Lie algebra, i.e., either $\mathfrak{gl}_n$, $\mathfrak{sp}_n$, or $\mathfrak{so}_n$ and let $e$ be a nilpotent element of $\mathfrak{g}$. We study various properties of the centralisers $\mathfrak{g}_e$. The first four sections deal with rather elementary questions, like the centre of $\mathfrak{g}_e$, commuting varieties associated with $\mathfrak{g}_e$, or centralisers of commuting pairs. The second half of the paper addresses problems related to different Poisson structures on $\mathfrak{g}_e^*$ and symmetric invariants of $\mathfrak{g}_e$.
LA - eng
KW - Nilpotent orbits; centralisers; symmetric invariants
UR - http://eudml.org/doc/10423
ER -

References

top
  1. I. V. Arzhantsev, On the actions of reductive groups with a one-parameter family of spherical orbits, Mat. Sb. 188 (1997), 3-20 Zbl0895.14015MR1478627
  2. J. Brown, J. Brundan, Elementary invariants for centralisers of nilpotent matrices Zbl1207.17025
  3. David H. Collingwood, William M. McGovern, Nilpotent orbits in semisimple Lie algebras, (1993), Van Nostrand Reinhold Co., New York Zbl0972.17008MR1251060
  4. Richard Cushman, Mark Roberts, Poisson structures transverse to coadjoint orbits, Bull. Sci. Math. 126 (2002), 525-534 Zbl1074.53070MR1931184
  5. Wee Liang Gan, Victor Ginzburg, Quantization of Slodowy slices, Int. Math. Res. Not. (2002), 243-255 Zbl0989.17014MR1876934
  6. Victor Ginzburg, Principal nilpotent pairs in a semisimple Lie algebra. I, Invent. Math. 140 (2000), 511-561 Zbl0984.17007MR1760750
  7. Willem A. de Graaf, Computing with nilpotent orbits in simple Lie algebras of exceptional type, LMS J. Comput. Math. 11 (2008), 280-297 Zbl1222.17003MR2434879
  8. Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory 228 (2004), 1-211, Birkhäuser Boston, Boston, MA Zbl1169.14319MR2042689
  9. V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190-213 Zbl0431.17007MR575790
  10. Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404 Zbl0124.26802MR158024
  11. John F. Kurtzke, Centralizers of irregular elements in reductive algebraic groups, Pacific J. Math. 104 (1983), 133-154 Zbl0477.20025MR683733
  12. Mircea Mustaţă, Jet schemes of locally complete intersection canonical singularities, Invent. Math. 145 (2001), 397-424 Zbl1091.14004MR1856396
  13. Michael G. Neubauer, B. A. Sethuraman, Commuting pairs in the centralizers of 2 -regular matrices, J. Algebra 214 (1999), 174-181 Zbl0924.15015MR1684884
  14. A. I. Ooms, M. Van den Bergh, A degree inequality for Lie algebras with a regular Poisson semi-center Zbl1254.17011
  15. D. I. Panyushev, A. Premet, O. S. Yakimova, On symmetric invariants of centralisers in reductive Lie algebras, J. Algebra 313 (2007), 343-391 Zbl1163.17012MR2326150
  16. Dmitri I. Panyushev, On the coadjoint representation of 2 -contractions of reductive Lie algebras, Adv. Math. 213 (2007), 380-404 Zbl1177.17010MR2331248
  17. Dmitri I. Panyushev, Oksana S. Yakimova, The argument shift method and maximal commutative subalgebras of Poisson algebras, Math. Res. Lett. 15 (2008), 239-249 Zbl1241.17025MR2385637
  18. R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math. 38 (1979), 311-327 Zbl0409.17006MR535074
  19. Jirō Sekiguchi, A counterexample to a problem on commuting matrices, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), 425-426 Zbl0566.17002MR732601
  20. Igor R. Shafarevich, Basic algebraic geometry. 1, (1994), Springer-Verlag, Berlin Zbl0797.14001MR1328833
  21. Robert Steinberg, Conjugacy classes in algebraic groups, (1974), Springer-Verlag, Berlin Zbl0281.20037MR352279
  22. E. B. Vinberg, O. S. Yakimova, Complete families of commuting functions for coisotropic Hamiltonian actions 
  23. Alan Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), 523-557 Zbl0524.58011MR723816
  24. O. S. Yakimova, The index of centralizers of elements in classical Lie algebras, Funktsional. Anal. i Prilozhen. 40 (2006), 52-64, 96 Zbl1152.17001MR2223249

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.