Surprising properties of centralisers in classical Lie algebras
- [1] Universität Erlangen-Nürnberg Mathematisches Institut Bismarckstrasse 1 1/2 91054 Erlangen (Germany)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 3, page 903-935
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topYakimova, Oksana. "Surprising properties of centralisers in classical Lie algebras." Annales de l’institut Fourier 59.3 (2009): 903-935. <http://eudml.org/doc/10423>.
@article{Yakimova2009,
abstract = {Let $\mathfrak\{g\}$ be a classical Lie algebra, i.e., either $\mathfrak\{gl\}_n$, $\mathfrak\{sp\}_n$, or $\mathfrak\{so\}_n$ and let $e$ be a nilpotent element of $\mathfrak\{g\}$. We study various properties of the centralisers $\mathfrak\{g\}_e$. The first four sections deal with rather elementary questions, like the centre of $\mathfrak\{g\}_e$, commuting varieties associated with $\mathfrak\{g\}_e$, or centralisers of commuting pairs. The second half of the paper addresses problems related to different Poisson structures on $\mathfrak\{g\}_e^*$ and symmetric invariants of $\mathfrak\{g\}_e$.},
affiliation = {Universität Erlangen-Nürnberg Mathematisches Institut Bismarckstrasse 1 1/2 91054 Erlangen (Germany)},
author = {Yakimova, Oksana},
journal = {Annales de l’institut Fourier},
keywords = {Nilpotent orbits; centralisers; symmetric invariants},
language = {eng},
number = {3},
pages = {903-935},
publisher = {Association des Annales de l’institut Fourier},
title = {Surprising properties of centralisers in classical Lie algebras},
url = {http://eudml.org/doc/10423},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Yakimova, Oksana
TI - Surprising properties of centralisers in classical Lie algebras
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 3
SP - 903
EP - 935
AB - Let $\mathfrak{g}$ be a classical Lie algebra, i.e., either $\mathfrak{gl}_n$, $\mathfrak{sp}_n$, or $\mathfrak{so}_n$ and let $e$ be a nilpotent element of $\mathfrak{g}$. We study various properties of the centralisers $\mathfrak{g}_e$. The first four sections deal with rather elementary questions, like the centre of $\mathfrak{g}_e$, commuting varieties associated with $\mathfrak{g}_e$, or centralisers of commuting pairs. The second half of the paper addresses problems related to different Poisson structures on $\mathfrak{g}_e^*$ and symmetric invariants of $\mathfrak{g}_e$.
LA - eng
KW - Nilpotent orbits; centralisers; symmetric invariants
UR - http://eudml.org/doc/10423
ER -
References
top- I. V. Arzhantsev, On the actions of reductive groups with a one-parameter family of spherical orbits, Mat. Sb. 188 (1997), 3-20 Zbl0895.14015MR1478627
- J. Brown, J. Brundan, Elementary invariants for centralisers of nilpotent matrices Zbl1207.17025
- David H. Collingwood, William M. McGovern, Nilpotent orbits in semisimple Lie algebras, (1993), Van Nostrand Reinhold Co., New York Zbl0972.17008MR1251060
- Richard Cushman, Mark Roberts, Poisson structures transverse to coadjoint orbits, Bull. Sci. Math. 126 (2002), 525-534 Zbl1074.53070MR1931184
- Wee Liang Gan, Victor Ginzburg, Quantization of Slodowy slices, Int. Math. Res. Not. (2002), 243-255 Zbl0989.17014MR1876934
- Victor Ginzburg, Principal nilpotent pairs in a semisimple Lie algebra. I, Invent. Math. 140 (2000), 511-561 Zbl0984.17007MR1760750
- Willem A. de Graaf, Computing with nilpotent orbits in simple Lie algebras of exceptional type, LMS J. Comput. Math. 11 (2008), 280-297 Zbl1222.17003MR2434879
- Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory 228 (2004), 1-211, Birkhäuser Boston, Boston, MA Zbl1169.14319MR2042689
- V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190-213 Zbl0431.17007MR575790
- Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404 Zbl0124.26802MR158024
- John F. Kurtzke, Centralizers of irregular elements in reductive algebraic groups, Pacific J. Math. 104 (1983), 133-154 Zbl0477.20025MR683733
- Mircea Mustaţă, Jet schemes of locally complete intersection canonical singularities, Invent. Math. 145 (2001), 397-424 Zbl1091.14004MR1856396
- Michael G. Neubauer, B. A. Sethuraman, Commuting pairs in the centralizers of -regular matrices, J. Algebra 214 (1999), 174-181 Zbl0924.15015MR1684884
- A. I. Ooms, M. Van den Bergh, A degree inequality for Lie algebras with a regular Poisson semi-center Zbl1254.17011
- D. I. Panyushev, A. Premet, O. S. Yakimova, On symmetric invariants of centralisers in reductive Lie algebras, J. Algebra 313 (2007), 343-391 Zbl1163.17012MR2326150
- Dmitri I. Panyushev, On the coadjoint representation of -contractions of reductive Lie algebras, Adv. Math. 213 (2007), 380-404 Zbl1177.17010MR2331248
- Dmitri I. Panyushev, Oksana S. Yakimova, The argument shift method and maximal commutative subalgebras of Poisson algebras, Math. Res. Lett. 15 (2008), 239-249 Zbl1241.17025MR2385637
- R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math. 38 (1979), 311-327 Zbl0409.17006MR535074
- Jirō Sekiguchi, A counterexample to a problem on commuting matrices, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), 425-426 Zbl0566.17002MR732601
- Igor R. Shafarevich, Basic algebraic geometry. 1, (1994), Springer-Verlag, Berlin Zbl0797.14001MR1328833
- Robert Steinberg, Conjugacy classes in algebraic groups, (1974), Springer-Verlag, Berlin Zbl0281.20037MR352279
- E. B. Vinberg, O. S. Yakimova, Complete families of commuting functions for coisotropic Hamiltonian actions
- Alan Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), 523-557 Zbl0524.58011MR723816
- O. S. Yakimova, The index of centralizers of elements in classical Lie algebras, Funktsional. Anal. i Prilozhen. 40 (2006), 52-64, 96 Zbl1152.17001MR2223249
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.